16,377 research outputs found

    Three Dimensional Topological Field Theory induced from Generalized Complex Structure

    Full text link
    We construct a three-dimensional topological sigma model which is induced from a generalized complex structure on a target generalized complex manifold. This model is constructed from maps from a three-dimensional manifold XX to an arbitrary generalized complex manifold MM. The theory is invariant under the diffeomorphism on the world volume and the bb-transformation on the generalized complex structure. Moreover the model is manifestly invariant under the mirror symmetry. We derive from this model the Zucchini's two dimensional topological sigma model with a generalized complex structure as a boundary action on ∂X\partial X. As a special case, we obtain three dimensional realization of a WZ-Poisson manifold.Comment: 18 page

    Effect of in-plane line defects on field-tuned superconductor-insulator transition behavior in homogeneous thin film

    Full text link
    Field-tuned superconductor-insulator transition (FSIT) behavior in 2D isotropic and homogeneous thin films is usually accompanied by a nonvanishing critical resistance at low TT. It is shown that, in a 2D film including line defects paralle to each other but with random positions perpendicular to them, the (apparent) critical resistance in low TT limit vanishes, as in the 1D quantum superconducting (SC) transition, under a current parallel to the line defects. This 1D-like critical resistive behavior is more clearly seen in systems with weaker point disorder and may be useful in clarifying whether the true origin of FSIT behavior in the parent superconductor is the glass fluctuation or the quantum SC fluctuation. As a by-product of the present calculation, it is also pointed out that, in 2D films with line-like defects with a long but {\it finite} correlation length parallel to the lines, a quantum metallic behavior intervening the insulating and SC ones appears in the resistivity curves.Comment: 16 pages, 14 figure

    Theoretical Description of Resistive Behavior near a Quantum Vortex-Glass Transition

    Full text link
    Resistive behaviors at nonzero temperatures (T > 0) reflecting a quantum vortex-glass (VG) transition (the so-called field-tuned superconductor-insulator transition at T=0) are studied based on a quantum Ginzburg-Landau (GL) action for a s-wave pairing case containing microscopic details. The ordinary dissipative dynamics of the pair-field is assumed on the basis of a consistency between the fluctuation conductance terms excluded from GL approach and an observed negative magnetoresistance. It is shown that the VG contribution, G_{vg}(B=B_{vg}, T \to 0),to 2D fluctuation conductance at the VG transition field B_{vg} depends on the strength of a repulsive-interaction between electrons and takes a universal value only in the ordinary dirty limit neglecting the electron-repulsion. Available resistivity data near B_{vg} are discussed based on our results, and extensions to the cases of a d-wave pairing and of 3D systems are briefly commented on.Comment: Explanation of data in strongly disordered case, as well as Fig.2 and 3, was renewed, and comments on recent publications were added. To appear in J.Phys.Soc. Jp

    Josephson Vortex States in Intermediate Fields

    Full text link
    Motivated by recent resistance data in high TcT_c superconductors in fields {\it parallel} to the CuO layers, we address two issues on the Josephson-vortex phase diagram, the appearances of structural transitions on the observed first order transition (FOT) curve in intermediate fields and of a lower critical point of the FOT line. It is found that some rotated pinned solids are more stable than the ordinary rhombic pinned solids with vacant interlayer spacings and that, due to the vertical portion in higher fields of the FOT line, the FOT tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February, 2002

    Microscopic Study of Quantum Vortex-Glass Transition Field in Two-Dimensional Superconductors

    Full text link
    The position of a field-tuned superconductor-insulator quantum transition occuring in disordered thin films is examined within the mean field approximation. Our calculation shows that the microscopic disorder-induced reduction of the quantum transition point found experimentally cannot be explained if the interplay between the disorder and an electron-electron repulsive interaction is ignored. This work is presented as a microscopic basis of an explanation (cond-mat/0105122) of resistive phenomena near the transition field.Comment: 16 pages, 5 figures. To appear in J.Phys.Soc.Jp

    An Alternative Topological Field Theory of Generalized Complex Geometry

    Full text link
    We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is AA model in the case that the generalized complex structuredepends on only a symplectic structure. Our new model is BB model in the case that the generalized complex structure depends on only a complex structure.Comment: 29 pages, typos and references correcte

    Evidence for realignment of the charge density wave state in ErTe3_3 and TmTe3_3 under uniaxial stress via elastocaloric and elastoresistivity measurements

    Full text link
    We report the evolution of a charge density wave (CDW) state in the quasi-2D rare-earth tritellurides (RRTe3_3 for RR=Er,Tm) as a function of in-plane uniaxial stress. Measurements of the elastocaloric effect, resistivity, and elastoresistivity allow us to demonstrate the importance of in-plane antisymmetric strain on the CDW and to establish a phase diagram. We show that modest tensile stress parallel to the in-plane aa-axis can reversibly switch the direction of the ordering wavevector between the two in-plane directions. This work establishes RRTe3_3 as a promising model system for the study of strain-CDW interactions in a quasi-2D square lattice.Comment: 18 pages, 12 figure

    Correlation of Local Order with Particle Mobility in Supercooled Liquids is Highly System Dependent

    Full text link
    We investigate the connection between local structure and dynamical heterogeneity in supercooled liquids. Through the study of four different models we show that the correlation between a particle's mobility and the degree of local order in nearby regions is highly system dependent. Our results suggest that the correlation between local structure and dynamics is weak or absent in systems that conform well to the mean-field picture of glassy dynamics and strong in those that deviate from this paradigm. Finally, we investigate the role of order-agnostic point-to-set correlations and reveal that they provide similar information content to local structure measures, at least in the system where local order is most pronounced.Comment: 6 pages, 3 figures and 6 page sup. with 5 figures and 1 tabl
    • …
    corecore