2,348 research outputs found
SSB-1 of the yeast Saccharomyces cerevisiae is a nucleolar-specific, silver-binding protein that is associated with the snR10 and snR11 small nuclear RNAs
SSB-1, the yeast single-strand RNA-binding protein, is demonstrated to be a yeast nucleolar-specific, silver-binding protein. In double-label immunofluorescence microscopy experiments antibodies to two other nucleolar proteins, RNA Pol I 190-kD and fibrillarin, were used to reveal the site of rRNA transcription; i.e., the fibrillar region of the nucleolus. SSB-1 colocalized with fibrillarin in a double-label immunofluorescence mapping experiment to the yeast nucleolus. SSB-1 is located, though, over a wider region of the nucleolus than the transcription site marker. Immunoprecipitations of yeast cell extracts with the SSB-1 antibody reveal that in 150 mM NaCl SSB-1 is bound to two small nuclear RNAs (snRNAs). These yeast snRNAs are snR10 and snR11, with snR10 being predominant. Since snR10 has been implicated in pre-rRNA processing, the association of SSB-1 and snR10 into a nucleolar snRNP particle indicates SSB-1 involvement in rRNA processing as well. Also, another yeast protein, SSB-36-kD, isolated by single- strand DNA chromatography, is shown to bind silver under the conditions used for nucleolar-specific staining. It is, most likely, another yeast nucleolar protein
1+1+2 Electromagnetic perturbations on general LRS space-times: Regge-Wheeler and Bardeen-Press equations
We use the, covariant and gauge-invariant, 1+1+2 formalism developed by
Clarkson and Barrett, and develop new techniques, to decouple electromagnetic
(EM) perturbations on arbitrary locally rotationally symmetric (LRS)
space-times. Ultimately, we derive 3 decoupled complex equations governing 3
complex scalars. One of these is a new Regge-Wheeler (RW) equation generalized
for LRS space-times, whereas the remaining two are new generalizations of the
Bardeen-Press (BP) equations. This is achieved by first using linear algebra
techniques to rewrite the first-order Maxwell equations in a new complex 1+1+2
form which is conducive to decoupling. This new complex system immediately
yields the generalized RW equation, and furthermore, we also derive a decoupled
equation governing a newly defined complex EM 2-vector. Subsequently, a further
decomposition of the 1+1+2 formalism into a 1+1+1+1 formalism is developed,
allowing us to decompose the complex EM 2-vector, and its governing equations,
into spin-weighted scalars, giving rise to the generalized BP equations
Which Constituent Quark Model Is Better?
A comparative study has been done by calculating the effective baryon-baryon
interactions of the 64 lowest channels consisting of octet and decuplet baryons
with three constituent quark models: the extended quark gluon exchange model,
the Goldstone boson exchange model and the quark gluon meson exchange hybrid
model. We find that these three models give similar results for 44 channels.
Further tests of these models are discussed.Comment: 6pp., 3 figs., Asia-Pacific Few-Body Conf. II (Shanghai, Aug.25-30
2002), to appear in MPLA; references adde
Vacuolar ATPase depletion contributes to dysregulation of endocytosis in bloodstream forms of Trypanosoma brucei
BACKGROUND
Vacuolar H-ATPase (V-ATPase) is a highly conserved protein complex which hydrolyzes ATP and pumps protons to acidify vacuolar vesicles. Beyond its role in pH maintenance, the involvement of V-ATPase in endocytosis is well documented in mammals and plants but is less clear in Trypanosoma brucei.
METHODS
In this study, the subcellular localization of V-ATPase subunit B (TbVAB) of T. brucei was assessed via in situ N-terminal YFP-tagging and immunofluorescence assays. Transgenic bloodstream forms (BSF) of T. brucei were generated which comprised either a V-ATPase subunit B (TbVAB) conditional knockout or a V-ATPase subunit A (TbVAA) knockdown. Acridine orange and BCECF-AM were employed to assess the roles of V-ATPase in the pH regulation of BSF T. brucei. The endocytic activities of three markers were also characterized by flow cytometry analyses. Furthermore, trypanosomes were counted from trypanolysis treatment groups (either containing 1% or 5% NHS) and endocytosed trypanosome lytic factor (TLF) was also analyzed by an immunoblotting assay.
RESULTS
TbVAB was found to localize to acidocalcisomes, lysosomes and probably also to endosomes of BSF of T. brucei and was demonstrated to be essential for cell growth. TbVAB depletion neutralized acidic organelles at 24 hours post-tetracycline depletion (hpd), meanwhile the steady state intracellular pH increased from 7.016 ± 0.013 to 7.422 ± 0.058. Trypanosomes with TbVAB depletion at 24 hpd were found to take up more transferrin (2.068 ± 0.277 fold) but less tomato lectin (49.31 ± 22.57%) by endocytosis, while no significant change was detected in dextran uptake. Similar endocytic dysregulated phenotypes were also observed in TbVAA knockdown cells. In addition, TbVAB depleted trypanosomes showed a low uptake of TLF and exhibited less sensitive to lysis in both 1% and 5% NHS treatments.
CONCLUSIONS
TbVAB is a key component of V-ATPase and was found to play a key function in endocytosis as well as exhibiting different effects in a receptor/cargo dependent manner in BSF of T. brucei. Besides vacuolar alkalinization, the dysregulation of endocytosis in TbVAB depleted T. brucei is considered to contribute to the reduced sensitivity to lysis by normal human serum
Rapidly Rotating Fermi Gases
We show that the density profile of a Fermi gas in rapidly rotating potential
will develop prominent features reflecting the underlying Landau level like
energy spectrum. Depending on the aspect ratio of the trap, these features can
be a sequence of ellipsoidal volumes or a sequence of quantized steps.Comment: 4 pages, 1 postscript fil
Universal velocity distributions in an experimental granular fluid
We present experimental results on the velocity statistics of a uniformly
heated granular fluid, in a quasi-2D configuration. We find the base state, as
measured by the single particle velocity distribution , to be universal
over a wide range of filling fractions and only weakly dependent on all other
system parameters. There is a consistent overpopulation in the distribution's
tails, which scale as . More
importantly, the high probability central region of , at low velocities,
deviates from a Maxwell-Boltzmann by a second order Sonine polynomial with a
single adjustable parameter, in agreement with recent theoretical analysis of
inelastic hard spheres driven by a stochastic thermostat. To our knowledge,
this is the first time that Sonine deviations have been measured in an
experimental system.Comment: 13 pages, 15 figures, with minor corrections, submitted to Phys. Rev.
Energy non-equipartition in systems of inelastic, rough spheres
We calculate and verify with simulations the ratio between the average
translational and rotational energies of systems with rough, inelastic
particles, either forced or freely cooling. The ratio shows non-equipartition
of energy. In stationary flows, this ratio depends mainly on the particle
roughness, but in nonstationary flows, such as freely cooling granular media,
it also depends strongly on the normal dissipation. The approach presented here
unifies and simplifies different results obtained by more elaborate kinetic
theories. We observe that the boundary induced energy flux plays an important
role.Comment: 4 pages latex, 4 embedded eps figures, accepted by Phys Rev
1+1+2 Electromagnetic perturbations on non-vacuum LRS class II space-times: Decoupling scalar and 2-vector harmonic amplitudes
We use the covariant and gauge-invariant 1+1+2 formalism of Clarkson and
Barrett \cite{Clarkson2003} to analyze electromagnetic (EM) perturbations on
non-vacuum {\it locally rotationally symmetric} (LRS) class II space-times.
Ultimately, we show how to derive six real decoupled equations governing the
total of six EM scalar and 2-vector harmonic amplitudes. Four of these are new,
and result from expanding the complex EM 2-vector which we defined in
\cite{Burston2007} in terms of EM 2-vector harmonic amplitudes. We are then
able to show that there are four precise combinations of the amplitudes that
decouple, two of these are polar perturbations whereas the remaining two are
axial. The remaining two decoupled equations are the generalized Regge-Wheeler
equations which were developed previously in \cite{Betschart2004}, and these
govern the two EM scalar harmonic amplitudes. However, our analysis generalizes
this by including a full description and classification of energy-momentum
sources, such as charges and currents.Comment: 9 page
Human African trypanosomiasis : the current situation in endemic regions and the risks for non-endemic regions from imported cases
Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei
gambiense and T. b. rhodesiense and caused devastating epidemics during the 20th
century. Due to effective control programs implemented in the last two decades, the
number of reported cases has fallen to a historically low level. Although fewer than
977 cases were reported in 2018 in endemic countries, HAT is still a public health
problem in endemic regions until it is completely eliminated. In addition, almost 150
confirmed HAT cases were reported in non-endemic countries in the last three
decades. The majority of non-endemic HAT cases were reported in Europe, United
States and South Africa, due to historical alliances, economic links or geographic
proximity to disease endemic countries. Furthermore, with the implementation of the
“Belt and Road” project, sporadic imported HAT cases have been reported in China
as a warning sign of tropical diseases prevention. In this paper, we explore and
interpret the data on HAT incidence and find no positive correlation between the
number of HAT cases from endemic and non-endemic countries.This data will
provide useful information for better understanding the imported cases of HAT
globally in the post-elimination phase
- …