1,006 research outputs found
Microwave spectra of van der Waals complexes of importance in planetary atmospheres
The Fourier-transform Fabry-Perot pulsed-molecular-beam microwave spectrometer at NIST was used to study the microwave spectra of a number of molecular dimers and trimers that may be present in planetary atmospheres. The weak van der Waals bonds associated with these species usually give rise to rotational-tunneling splittings in the microwave spectra. The microwave spectrum of the water dimer species was used to illustrate the complications that can arise in the study of the rotational spectra of these loosely bound species. In addition to the water dimer species, the microwave spectra of the following hydrogen-bonded and van der Waals complexes were studied: (CO2)2-H2O, CO2-(H2O)2, CO2-H2S, N2-H2O, CO-H2O, SO2-H2O, and O3-H2O
Antibound poles in cutoff Woods-Saxon and in Salamon-Vertse potentials
The motion of l=0 antibound poles of the S-matrix with varying potential
strength is calculated in a cutoff Woods-Saxon (WS) potential and in the
Salamon-Vertse (SV) potential, which goes to zero smoothly at a finite
distance. The pole position of the antibound states as well as of the
resonances depend on the cutoff radius, especially for higher node numbers. The
starting points (at potential zero) of the pole trajectories correlate well
with the range of the potential. The normalized antibound radial wave functions
on the imaginary k-axis below and above the coalescence point have been found
to be real and imaginary, respectively
A Spectral Line Survey of Selected 3 mm Bands Toward Sagittarius B2(N-LMH) Using the NRAO 12 Meter Radio Telescope and the BIMA Array I. The Observational Data
We have initiated a spectral line survey, at a wavelength of 3 millimeters,
toward the hot molecular core Sagittarius B2(N-LMH). This is the first spectral
line survey of the Sgr B2(N) region utilizing data from both an interferometer
(BIMA Array) and a single-element radio telescope (NRAO 12 meter). In this
survey, covering 3.6 GHz in bandwidth, we detected 218 lines (97 identified
molecular transitions, 1 recombination line, and 120 unidentified transitions).
This yields a spectral line density (lines per 100 MHz) of 6.06, which is much
larger than any previous 3 mm line survey. We also present maps from the BIMA
Array that indicate that most highly saturated species (3 or more H atoms) are
products of grain chemistry or warm gas phase chemistry. Due to the nature of
this survey we are able to probe each spectral line on multiple spatial scales,
yielding information that could not be obtained by either instrument alone.Comment: 35 pages, 15 figures, to be published in The Astrophysical Journa
Comment on ``Large-space shell-model calculations for light nuclei''
In a recent publication Zheng, Vary, and Barrett reproduced the negative
quadrupole moment of Li-6 and the low-lying positive-parity states of He-5 by
using a no-core shell model. In this Comment we question the meaning of these
results by pointing out that the model used is inadequate for the reproduction
of these properties.Comment: Latex with Revtex, 1 postscript figure in separate fil
Non-Thermal Continuum toward SGRB2(N-LMH)
An analysis of continuum antenna temperatures observed in the Green Bank
Telescope (GBT) spectrometer bandpasses is presented for observations toward
SgrB2(N-LMH). Since 2004, we have identified four new prebiotic molecules
toward this source by means of rotational transitions between low energy
levels; concurrently, we have observed significant continuum in the GBT
spectrometer bandpasses centered at 85 different frequencies in the range of 1
to 48 GHz. The continuum heavily influences the molecular spectral features
since we have observed far more absorption lines than emission lines for each
of these new molecular species. Hence, it is important to understand the
nature, distribution, and intensity of the underlying continuum in the GBT
bandpasses for the purposes of radiative transfer, i.e. the means by which
reliable molecular abundances are estimated. We find that the GBT spectrometer
bandpass continuum is consistent with optically-thin, non thermal (synchrotron)
emission with a flux density spectral index of -0.7 and a Gaussian source size
of ~143" at 1 GHz that decreases with increasing frequency as nu^(-0.52). Some
support for this model is provided by high frequency Very Large Array (VLA)
observations of SgrB2.Comment: Accepted for Publication in the Astrophysical Journal Letter
The neutron halo of He in a microscopic model
The two--neutron separation energy of He has been reproduced for the
first time in a realistic parameter--free microscopic multicluster model
comprising the and clusterizations, with cluster
breathing excitations included. The contribution of the channel is
substantial. A very thick (0.85 fm) neutron halo has been found in full
agreement with the results of the latest phenomenological analysis.Comment: Submitted to Phys. Rev. C, 8 pages, Latex with Revtex, 2 figures (not
included) available on request, 08-03-9
The complex molecular absorption line system at z=0.886 towards PKS1830-211
New millimeter wave observations of the molecular absorption line system in
the gravitational lens to PKS1830-211 at z=0.88582 is presented.
Self-calibrated interferometer data shows unequivocally that the previously
detected absorption component is associated with the gravitationally lensed
south-west image of the background source. A second absorption line of
HCO+(2-1) at z=0.88582 is detected. This component is shifted in velocity by
-147 km/s relative to the main absorption line, and is shown to be associated
with the north-east image. These two absorption lines are used to constrain the
mass of the lensing galaxy. Upper limits to absorption and emission lines from
the possible absorption system at z=0.1927, seen in 21cm HI by Lovell et al,
are reported.Comment: 16 pages, 7 figures, Accepted for publication in Ap
- …