71,601 research outputs found
Orbiting valence quarks and their influence on the structure functions of the nucleon
It is shown that intrinsic orbital motion of the valence quarks has large
influences on the spin-dependent as well as the spin-averaged nucleon structure
functions. Its connection with the observed ``very small contribution of quark
spin to nucleon spin'' and the observed violation of Gottfried sum rule is
discussed.Comment: 10 pages (LaTeX) including 3 figure
Eigen-Based Transceivers for the MIMO Broadcast Channel with Semi-Orthogonal User Selection
This paper studies the sum rate performance of two low complexity
eigenmode-based transmission techniques for the MIMO broadcast channel,
employing greedy semi-orthogonal user selection (SUS). The first approach,
termed ZFDPC-SUS, is based on zero-forcing dirty paper coding; the second
approach, termed ZFBF-SUS, is based on zero-forcing beamforming. We first
employ new analytical methods to prove that as the number of users K grows
large, the ZFDPC-SUS approach can achieve the optimal sum rate scaling of the
MIMO broadcast channel. We also prove that the average sum rates of both
techniques converge to the average sum capacity of the MIMO broadcast channel
for large K. In addition to the asymptotic analysis, we investigate the sum
rates achieved by ZFDPC-SUS and ZFBF-SUS for finite K, and show that ZFDPC-SUS
has significant performance advantages. Our results also provide key insights
into the benefit of multiple receive antennas, and the effect of the SUS
algorithm. In particular, we show that whilst multiple receive antennas only
improves the asymptotic sum rate scaling via the second-order behavior of the
multi-user diversity gain; for finite K, the benefit can be very significant.
We also show the interesting result that the semi-orthogonality constraint
imposed by SUS, whilst facilitating a very low complexity user selection
procedure, asymptotically does not reduce the multi-user diversity gain in
either first (log K) or second-order (loglog K) terms.Comment: 35 pages, 3 figures, to appear in IEEE transactions on signal
processin
The Tate-Shafarevich group for elliptic curves with complex multiplication II
Let E be an elliptic curve over Q with complex multiplication. The aim of the
present paper is to strengthen the theoretical and numerical results of
\cite{CZS}. For each prime p, let t_{E/Q, p} denote the Z_p-corank of the
p-primary subgroup of the Tate-Shafarevich group of E/Q. For each \epsilon
0, we prove that t_{E/Q, p} is bounded above by (1/2+\epsilon)p for all
sufficiently large good ordinary primes p. We also do numerical calculations on
one such E of rank 3, and 5 such E of rank 2, showing in all cases that t_{E/Q,
p} = 0 for all good ordinary primes p < 30,000. In fact, we show that, with the
possible exception of one good ordinary prime in this range for just one of the
curves of rank 2, the p-primary subgroup of the Tate-Shafarevich group of the
curve is zero (always supposing p is a good ordinary prime).Comment: 24 page
Globally Polarized Quark-gluon Plasma in Non-central A+A Collisions
Produced partons have large local relative orbital angular momentum along the
direction opposite to the reaction plane in the early stage of non-central
heavy-ion collisions. Parton scattering is shown to polarize quarks along the
same direction due to spin-orbital coupling. Such global quark polarization
will lead to many observable consequences, such as left-right asymmetry of
hadron spectra, global transverse polarization of thermal photons, dileptons
and hadrons. Hadrons from the decay of polarized resonances will have azimuthal
asymmetry similar to the elliptic flow. Global hyperon polarization is
predicted within different hadronization scenarios and can be easily tested.Comment: 4 pages in RevTex with 2 postscript figures, an erratum is added to
the final published versio
Remote multispectral imaging with PRISMS and XRF analysis of Tang Tomb paintings
PRISMS (Portable Remote Imaging System for Multispectral Scanning) is a multispectral/hyperspectral imaging system designed for flexible in situ imaging of wall paintings at high resolution (tens of microns) over a large range of distances (less than a meter to over ten meters). This paper demonstrates a trial run of the VIS/NIR (400-880nm) component of the instrument for non-invasive imaging of wall paintings in situ. Wall painting panels from excavated Tang dynasty (618-907AD) tombs near Xi’an were examined by PRISMS. Pigment identifications were carried out using the spectral reflectance obtained from multispectral imaging coupled with non-invasive elemental analysis using a portable XRF
SU(2)-invariant spin liquids on the triangular lattice with spinful Majorana excitations
We describe a new class of spin liquids with global SU(2) spin rotation
symmetry in spin 1/2 systems on the triangular lattice, which have real
Majorana fermion excitations carrying spin S = 1. The simplest
translationally-invariant mean-field state on the triangular lattice breaks
time-reversal symmetry and is stable to fluctuations. It generically possesses
gapless excitations along 3 Fermi lines in the Brillouin zone. These intersect
at a single point where the excitations scale with a dynamic exponent z = 3. An
external magnetic field has no orbital coupling to the SU(2) spin
rotation-invariant fermion bilinears that can give rise to a transverse thermal
conductivity, thus leading to the absence of a thermal Hall effect. The Zeeman
coupling is found to gap out two-thirds of the z = 3 excitations near the
intersection point and this leads to a suppression of the low temperature
specific heat, the spin susceptibility and the Wilson ratio. We also compute
physical properties in the presence of weak disorder and discuss possible
connections to recent experiments on organic insulators.Comment: 26 pages, 11 figure
Cornell University remote sensing program
There are no author-identified significant results in this report
- …