2 research outputs found

    A novel approach to modelling water transport and drug diffusion through the stratum corneum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potential of using skin as an alternative path for systemically administering active drugs has attracted considerable interest, since the creation of novel drugs capable of diffusing through the skin would provide a great step towards easily applicable -and more humane- therapeutic solutions. However, for drugs to be able to diffuse, they necessarily have to cross a permeability barrier: the <it>stratum corneum </it>(SC), the uppermost set of skin layers. The precise mechanism by which drugs penetrate the skin is generally thought to be diffusion of molecules through this set of layers following a "tortuous pathway" around corneocytes, i.e. impermeable dead cells.</p> <p>Results</p> <p>In this work, we simulate water transport and drug diffusion using a three-dimensional porous media model. Our numerical simulations show that diffusion takes place through the SC regardless of the direction and magnitude of the fluid pressure gradient, while the magnitude of the concentrations calculated are consistent with experimental studies.</p> <p>Conclusions</p> <p>Our results support the possibility for designing arbitrary drugs capable of diffusing through the skin, the time-delivery of which is solely restricted by their diffusion and solubility properties.</p

    A model of solute transport through stratum corneum using solute capture and release

    No full text
    A one-dimensional model of solute transport through the stratum corneum is presented. Solute is assumed to diffuse through lipid bi-layers surrounding impermeable corneocytes. Transverse diffusion (perpendicular to the skin surface) through lipids separating adjacent corneocytes, is modeled in the usual way. Longitudinal diffusion (parallel to the skin surface) through lipids between corneocyte layers, is modeled as temporary trapping of solute, with subsequent release in the transverse direction. This leads to a linear equation for one-dimensional transport in the transverse direction. The model involves an arbitrary function whose precise form is uncertain. For a specific choice of this function, closed form expressions for the Laplace transform of solute out-flux at the inner boundary, and for the time lag are obtained in the case that a constant solute concentration is maintained at the outer skin surface, with the inner boundary of the stratum corneum kept at zero concentration, and with the stratum corneum initially free of solute
    corecore