16,495 research outputs found
Evidence for the existence of new processes at energies above 2 times 10 11 eV
Cosmic ray flux measurements using calorimeter
Fundamental ignition study for material fire safety improvement, part 2
The autoignition behavior of polymeric compositions in oxidizing media was investigated as well as the nature and relative concentration of the volatiles produced during oxidative decomposition culminating in combustion. The materials investigated were Teflon, Fluorel KF-2140 raw gum and its compounded versions Refset and Ladicote, 45B3 intumenscent paint, and Ames isocyanurate foam. The majority of the tests were conducted using a stagnation burner arrangement which provided a laminar gas flow and allowed the sample block and gas temperatures to be varied independently. The oxidizing atmospheres were essentially air and oxygen, although in the case of the Fluorel family of materials, due to partial blockage of the gas inlet system, some tests were performed unintentionally in enriched air (not oxygen). The 45B3 paint was not amenable to sampling in a dynamic system, due to its highly intumescent nature. Consequently, selected experiments were conducted using a sealed tube technique both in air and oxygen media
Turbine Vane External Heat Transfer. Volume 1: Analytical and Experimental Evaluation of Surface Heat Transfer Distributions with Leading Edge Showerhead Film Cooling
Progress in predictive design capabilities for external heat transfer to turbine vanes was summarized. A two dimensional linear cascade (previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils) was used to examine the effect of leading edge shower head film cooling on downstream heat transfer. The data were used to develop and evaluate analytical models. Modifications to the two dimensional boundary layer model are described. The results were used to formulate and test an effective viscosity model capable of predicting heat transfer phenomena downstream of the leading edge film cooling array on both the suction and pressure surfaces, with and without mass injection
The effects of leading edge and downstream film cooling on turbine vane heat transfer
The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils
Turbine airfoil film cooling
The experimental data obtained in this program gives insight into the physical phenomena that occur on a film cooled airfoil, and should provide a relevant data base for verification of new design tools. Results indicate that the downstream film cooling process is a complex function of the thermal dilution and turbulence augmentation parameters with trends actually reversing as blowing strength and coolant-to-gas temperature ratio varied. The pressure surface of the airfoil is shown to exhibit a considerably higher degree of sensitivity to changes in the film cooling parameters and, consequently, should prove to be more of a challenge than the suction surface in accurately predicting heat transfer levels with downsteam film cooling
Recommended from our members
The Nature of Expertise in the Clinical Interview: Interactive Medical Problem Solving
Rapid Oxidation Characterization of Ultra-High Temperature Ceramics
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65673/1/j.1551-2916.2007.01861.x.pd
Testing Linear-Invariant Non-Linear Properties
We consider the task of testing properties of Boolean functions that are
invariant under linear transformations of the Boolean cube. Previous work in
property testing, including the linearity test and the test for Reed-Muller
codes, has mostly focused on such tasks for linear properties. The one
exception is a test due to Green for "triangle freeness": a function
f:\cube^{n}\to\cube satisfies this property if do not all
equal 1, for any pair x,y\in\cube^{n}.
Here we extend this test to a more systematic study of testing for
linear-invariant non-linear properties. We consider properties that are
described by a single forbidden pattern (and its linear transformations), i.e.,
a property is given by points v_{1},...,v_{k}\in\cube^{k} and
f:\cube^{n}\to\cube satisfies the property that if for all linear maps
L:\cube^{k}\to\cube^{n} it is the case that do
not all equal 1. We show that this property is testable if the underlying
matroid specified by is a graphic matroid. This extends
Green's result to an infinite class of new properties.
Our techniques extend those of Green and in particular we establish a link
between the notion of "1-complexity linear systems" of Green and Tao, and
graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the
proceedings of STACS 200
Distinguishing Between Animates And Inanimates: Not By Motion Alone
Martin E. P. Seligman, professor of psychology at the University of Pennsylvania, is one of the world\u27s leading authorities on learned helplessness and its relation to optimism and hope. This collection brings together eminent psychologists and professionals whose work has been greatly influenced by Seligman\u27s innovative work
Global Management Effectiveness Study: Integrated Social and Ecological Report for Non-node and Node Sites
The purpose of this study is to provide a critical assessment of the implementation, impact, and performance of Marine Managed Area (MMA) projects to serve as a basis for improved planning and implementation of new MMA projects worldwide. The specific objectives of the study are (1) to determine the socioeconomic, governance and ecological effects of MMAs; (2) to determine the critical factors influencing MMA effects, as well as the impact of the timing of those factors on the effects of the MMA; and (3) to provide tools for predicting MMA effects based on ecological, socioeconomic and governance variable
- …