40 research outputs found

    Minimal residual disease negativity by next-generation flow cytometry is associated with improved organ response in AL amyloidosis

    Get PDF
    Light chain (AL) amyloidosis is caused by a small B-cell clone producing light chains that form amyloid deposits and cause organ dysfunction. Chemotherapy aims at suppressing the production of the toxic light chain (LC) and restore organ function. However, even complete hematologic response (CR), defined as negative serum and urine immunofixation and normalized free LC ratio, does not always translate into organ response. Next-generation flow (NGF) cytometry is used to detect minimal residual disease (MRD) in multiple myeloma. We evaluated MRD by NGF in 92 AL amyloidosis patients in CR. Fifty-four percent had persistent MRD (median 0.03% abnormal plasma cells). There were no differences in baseline clinical variables in patients with or without detectable MRD. Undetectable MRD was associated with higher rates of renal (90% vs 62%, p = 0.006) and cardiac response (95% vs 75%, p = 0.023). Hematologic progression was more frequent in MRD positive (0 vs 25% at 1 year, p = 0.001). Altogether, NGF can detect MRD in approximately half the AL amyloidosis patients in CR, and persistent MRD can explain persistent organ dysfunction. Thus, this study supports testing MRD in CR patients, especially if not accompanied by organ response. In case MRD persists, further treatment could be considered, carefully balancing residual organ damage, patient frailty, and possible toxicity

    Measurable Residual Disease by Next-Generation Flow Cytometry in Multiple Myeloma

    Get PDF
    PURPOSE: Assessing measurable residual disease (MRD) has become standard with many tumors, but the clinical meaning of MRD in multiple myeloma (MM) remains uncertain, particularly when assessed by next-generation flow (NGF) cytometry. Thus, we aimed to determine the applicability and sensitivity of the flow MRD-negative criterion defined by the International Myeloma Working Group (IMWG). PATIENTS AND METHODS: In the PETHEMA/GEM2012MENOS65 trial, 458 patients with newly diagnosed MM had longitudinal assessment of MRD after six induction cycles with bortezomib, lenalidomide, and dexamethasone (VRD), autologous transplantation, and two consolidation courses with VRD. MRD was assessed in 1, 100 bone marrow samples from 397 patients; the 61 patients without MRD data discontinued treatment during induction and were considered MRD positive for intent-to-treat analysis. The median limit of detection achieved by NGF was 2.9 × 10-6. Patients received maintenance (lenalidomide ± ixazomib) according to the companion PETHEMA/GEM2014MAIN trial. RESULTS: Overall, 205 (45%) of 458 patients had undetectable MRD after consolidation, and only 14 of them (7%) have experienced progression thus far; seven of these 14 displayed extraosseous plasmacytomas at diagnosis and/or relapse. Using time-dependent analysis, patients with undetectable MRD had an 82% reduction in the risk of progression or death (hazard ratio, 0.18; 95% CI, 0.11 to 0.30; P < .001) and an 88% reduction in the risk of death (hazard ratio, 0.12; 95% CI, 0.05 to 0.29; P < .001). Timing of undetectable MRD (after induction v intensification) had no impact on patient survival. Attaining undetectable MRD overcame poor prognostic features at diagnosis, including high-risk cytogenetics. By contrast, patients with Revised International Staging System III status and positive MRD had dismal progression-free and overall survivals (median, 14 and 17 months, respectively). Maintenance increased the rate of undetectable MRD by 17%. CONCLUSION: The IMWG flow MRD-negative response criterion is highly applicable and sensitive to evaluate treatment efficacy in MM

    Multiple myeloma and SARS-CoV-2 infection : clinical characteristics and prognostic factors of inpatient mortality

    Get PDF
    There is limited information on the characteristics, prognostic factors, and outcomes of patients with multiple myeloma (MM) hospitalized with COVID-19. This retrospective case series investigated 167 patients reported from 73 hospitals within the Spanish Myeloma Collaborative Group network in March and April, 2020. Outcomes were compared with 167 randomly selected, contemporary, age-/sex-matched noncancer patients with COVID-19 admitted at six participating hospitals. Among MM and noncancer patients, median age was 71 years, and 57% of patients were male; 75 and 77% of patients, respectively, had at least one comorbidity. COVID-19 clinical severity was moderate-severe in 77 and 89% of patients and critical in 8 and 4%, respectively. Supplemental oxygen was required by 47 and 55% of MM and noncancer patients, respectively, and 21%/9% vs 8%/6% required noninvasive/invasive ventilation. Inpatient mortality was 34 and 23% in MM and noncancer patients, respectively. Among MM patients, inpatient mortality was 41% in males, 42% in patients aged >65 years, 49% in patients with active/progressive MM at hospitalization, and 59% in patients with comorbid renal disease at hospitalization, which were independent prognostic factors on adjusted multivariate analysis. This case series demonstrates the increased risk and identifies predictors of inpatient mortality among MM patients hospitalized with COVID-19

    Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain

    Get PDF
    A population of >6 million people worldwide at high risk of Alzheimer’s disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of β-amyloid-(Aβ)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aβ deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome-21-gene BACE2, but prevented by combined chemical β and γ-secretase inhibition. We found that T21-organoids secrete increased proportions of Aβ-preventing (Aβ1-19) and Aβ-degradation products (Aβ1-20 and Aβ1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1-inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in ~30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases

    Explorando la celula de origen y los programas transcripcionales patologicos en mieloma multiple (MM) y amiloidosis de cadena ligera (AL) mediante la diseccion del desarrollo de la celula plasmatica (CP) normal

    Get PDF
    CO-009 MM y AL son las dos gammapatias monoclonales malignas más comunes. Los intentos para identificar las diferencias genéticas entre ambas han tenido poco éxito. Además, se desconoce si MM y AL emergen del mismo compartimento de CPs normales. Nos proponemos definir el atlas trancripcional del desarrollo de la CP normal en sangre periférica (SP) y medula ósea (MO), y compararlo con el programa transcripcional de las CPs clonales de MM y AL. Se estudiaron 93 individuos, en 7 donantes sanos (DS), se aislaron CP de SP según su isotipo de cadena pesada (IgG, IgA and IgM). Adicionalmente, se obtuvieron 5 subpoblaciones de CP de MO basadas en la expresión de CD19, CD39, CD81 y CD56. Las CPs clonales de pacientes con MM (n=38) y AL (n=41) se separaron mediante FACS por fenotipo aberrante especifico de paciente. Para estudiar poblaciones de CP con un reducido numero de células aisladas, empleamos un método de RNAseq de alta sensibilidad (MARS-seq). Se realizaron todas las comparaciones pareadas posibles de expresión diferencial (Deseq2). Se generaron datos de expresión mediante single-cell RNAseq (scRNAseq, 10xGenomics) de un total de 35, 910 PCs de 3 HA, 2 MM and 2 AL, que fueron analizados de manera integrada con el paquete Seurat en R. ..

    Flow cytometry for fast screening and automated risk assessment in systemic light-chain amyloidosis

    Get PDF
    Early diagnosis and risk stratification are key to improve outcomes in light-chain (AL) amyloidosis. Here we used multidimensional-flow-cytometry (MFC) to characterize bone marrow (BM) plasma cells (PCs) from a series of 166 patients including newly-diagnosed AL amyloidosis (N = 94), MGUS (N = 20) and multiple myeloma (MM, N = 52) vs. healthy adults (N = 30). MFC detected clonality in virtually all AL amyloidosis (99%) patients. Furthermore, we developed an automated risk-stratification system based on BMPCs features, with independent prognostic impact on progression-free and overall survival of AL amyloidosis patients (hazard ratio: ≥ 2.9;P ≤ .03). Simultaneous assessment of the clonal PCs immunophenotypic protein expression profile and the BM cellular composition, mapped AL amyloidosis in the crossroad between MGUS and MM; however, lack of homogenously-positive CD56 expression, reduction of B-cell precursors and a predominantly-clonal PC compartment in the absence of an MM-like tumor PC expansion, emerged as hallmarks of AL amyloidosis (ROC-AUC = 0.74;P < .001), and might potentially be used as biomarkers for the identification of MGUS and MM patients, who are candidates for monitoring pre-symptomatic organ damage related to AL amyloidosis. Altogether, this study addressed the need for consensus on how to use flow cytometry in AL amyloidosis, and proposes a standardized MFC-based automated risk classification ready for implementation in clinical practice

    A Simple Frailty Score Predicts Survival and Early Mortality in Systemic AL Amyloidosis

    Get PDF
    Systemic AL amyloidosis is a challenging disease for which many patients are considered frail in daily clinical practice. However, no study has so far addressed frailty and its impact on the outcome of these patients. We built a simple score to predict mortality based on three frailty-associated variables: age, ECOG performance status (<2 vs. ≥2) and NT-proBNP (<8500 vs. ≥8500 ng/L). Four-hundred and sixteen consecutive newly diagnosed patients diagnosed at ten sites from the Spanish Myeloma Group were eligible for the study. The score was developed in a derivation cohort from a referral center, and it was externally validated in a multicenter cohort. Multivariate analysis showed that the three variables were independent predictors of survival. The score was able to discriminate four groups of patients in terms of overall survival and early mortality in both cohorts. Comorbidity was also analyzed with the Charlson comorbidity index, but it did not reach statistical significance in the model. A nomogram was created to easily estimate the mortality risk of each patient at each time point. This score is a simple, robust, and efficient approach to dynamically assess frailty-dependent mortality both at diagnosis and throughout follow-up. The optimal treatment for frail AL amyloidosis patients remains to be determined but we suggest that the estimation of frailty-associated risk could complement current staging systems, adding value in clinical decision-making in this complex scenario.Peer reviewe
    corecore