377 research outputs found
Extended Quantum Dimer Model and novel valence-bond phases
We extend the quantum dimer model (QDM) introduced by Rokhsar and Kivelson so
as to construct a concrete example of the model which exhibits the first-order
phase transition between different valence-bond solids suggested recently by
Batista and Trugman and look for the possibility of other exotic dimer states.
We show that our model contains three exotic valence-bond phases (herringbone,
checkerboard and dimer smectic) in the ground-state phase diagram and that it
realizes the phase transition from the staggered valence-bond solid to the
herringbone one. The checkerboard phase has four-fold rotational symmetry,
while the dimer smectic, in the absence of quantum fluctuations, has massive
degeneracy originating from partial ordering only in one of the two spatial
directions. A resonance process involving three dimers resolves this massive
degeneracy and dimer smectic gets ordered (order from disorder).Comment: 20 pages, 13 figures, accepted for publication in J. Stat. Mec
Charge-dependent anisotropic flow in high-energy heavy-ion collisions from relativistic resistive magneto-hydrodynamic expansion
We have investigated the charge-dependent anisotropic flow in high-energy
heavy-ion collisions, using relativistic resistive magneto-hydrodynamics
(RRMHD). We consider the optical Glauber model as an initial model of the
quark-gluon plasma (QGP) and the solution of the Maxwell equations with source
term of the charged particles in two colliding nuclei as initial
electromagnetic fields. The RRMHD simulation is performed with these initial
conditions in Au-Au and Cu-Au collisions at GeV.
We have calculated the charge-odd contribution to the directed flow and elliptic flow in both collisions based on electric charge
distributions as a consequence of RRMHD. Our results show that the
and are approximately proportional to the electrical conductivity
() of the medium. In the case, our
result of is consistent with STAR data in Au-Au collisions.
Furthermore, in Cu-Au collisions, has a non-zero value at . We conclude that the charge-dependent anisotropic flow is a good probe to
extract the electrical conductivity of the QGP medium in high-energy heavy-ion
experiments.Comment: 10 pages, 9 figure
Relativistic resistive magneto-hydrodynamics code for high-energy heavy-ion collisions
We construct a relativistic resistive magneto-hydrodynamic (RRMHD) numerical
simulation code for high-energy heavy-ion collisions. We split the system of
differential equations into two parts, a non-stiff and a stiff part. For the
non-stiff part, we evaluate the numerical flux using HLL approximated Riemann
solver and execute the time integration by the second-order of Runge-Kutta
algorithm. For the stiff part, which appears in Ampere's law, we integrate the
equations using semi-analytic solutions of the electric field. We employ the
generalized Lagrange multiplier method to ensure the divergence-free constraint
for the magnetic field and Gauss's law. We confirm that our code reproduces
well the results of standard RRMHD tests in the Cartesian coordinates. In the
Milne coordinates, the code with high conductivity is validated against
relativistic ideal MHD tests. We also verify the semi-analytic solutions of the
accelerating longitudinal expansion of relativistic resistive
magneto-hydrodynamics in high-energy heavy-ion collisions in a comparison with
our numerical result. Our numerical code reproduces these solutions.Comment: 16 pages, 14 figure
Slot Resonators for Characterization of Dielectrics at Microwave Frequencies
Open planar resonators like single and stacked microstrip resonators were used in the past for the measurement of dielectric constants and thicknesses of lossy and lossless dielectrics at microwave frequencies [1–3]. With a large width, the microstrip resonator effectively acts as a planar antenna in which case the fringing field is significant for the two slots at the two ends of the resonator and the resonator Q-factor is low. One of the limitations of the microstrip resonator is its spatial resolution which is determined by the size of the resonator. It is envisaged that this problem can be overcome by the use of planar slot resonators, Fig.1. Furthermore, compared to the microstrip-fed microstrip resonator, a microstrip-fed planar slot resonator would provide a better isolation between the feed and the material under test
Darkness visible: reflections on underground ecology
1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes
Edge influence on vegetation at natural and anthropogenic edges of boreal forests in Canada and Fennoscandia
Although anthropogenic edges are an important consequence of timber harvesting, edges due to natural disturbances or landscape heterogeneity are also common. Forest edges have been well studied in temperate and tropical forests, but less so in less productive, disturbance-adapted boreal forests. We synthesized data on forest vegetation at edges of boreal forests and compared edge influence among edge types (fire, cut, lake/wetland; old vs. young), forest types (broadleaf vs. coniferous) and geographic regions. Our objectives were to quantify vegetation responses at edges of all types and to compare the strength and extent of edge influence among different types of edges and forests. Research was conducted using the same general sampling design in Alberta, Ontario and Quebec in Canada, and in Sweden and Finland. We conducted a meta-analysis for a variety of response variables including forest structure, deadwood abundance, regeneration, understorey abundance and diversity, and non-vascular plant cover. We also determined the magnitude and distance of edge influence (DEI) using randomization tests. Some edge responses (lower tree basal area, tree canopy and bryophyte cover; more logs; higher regeneration) were significant overall across studies. Edge influence on ground vegetation in boreal forests was generally weak, not very extensive (DEI usually < 20 m) and decreased with time. We found more extensive edge influence at natural edges, at younger edges and in broadleaf forests. The comparison among regions revealed weaker edge influence in Fennoscandian forests. Synthesis. Edges created by forest harvesting do not appear to have as strong, extensive or persistent influence on vegetation in boreal as in tropical or temperate forested ecosystems. We attribute this apparent resistance to shorter canopy heights, inherent heterogeneity in boreal forests and their adaptation to frequent natural disturbance. Nevertheless, notable differences between forest structure responses to natural (fire) and anthropogenic (cut) edges raise concerns about biodiversity implications of extensive creation of anthropogenic edges. By highlighting universal responses to edge influence in boreal forests that are significant irrespective of edge or forest type, and those which vary by edge type, we provide a context for the conservation of boreal forests. Edges created by forest harvesting do not appear to have as strong, extensive or persistent influence on vegetation in boreal as in tropical or temperate forested ecosystems. We attribute this apparent resistance to shorter canopy heights, inherent heterogeneity in boreal forests and their adaptation to frequent natural disturbance. Nevertheless, notable differences between forest structure responses to natural (fire) and anthropogenic (cut) edges raise concerns about biodiversity implications of extensive creation of anthropogenic edges. By highlighting universal responses to edge influence in boreal forests that are significant irrespective of edge or forest type, and those which vary by edge type, we provide a context for the conservation of boreal forests
Macroecology of ground beetles : Species richness, range size and body size show different geographical patterns across a climatically heterogeneous area
Aim
Ecogeographical patterns have been widely studied in endothermic vertebrates, but relatively few studies have simultaneously examined patterns and causes of gradients in species richness, range size and body size in ectothermic insects. We examined patterns in species richness, mean range size and mean body size of ground beetle assemblages across the biogeographical provinces of Northern Europe, a region that was mostly covered by ice sheets during the latest Ice Age and that presents strong contemporary climatic gradients.
Location
Northern Europe.
Methods
We used literature information on the occurrence of ground beetles, and analysed patterns in species richness, mean range size and mean body size across the provinces using generalized linear models and boosted regression tree (BRT) analysis.
Results
We found a strongly decreasing gradient in species richness with increasing latitude, a strongly unimodal range size-latitude relationship, and a weak unimodal body size-latitude relationship in entire ground beetle assemblages. These gradients also varied among four major genera, suggesting that the overall patterns result from the nuances of smaller clades of ground beetles. The relative importance of contemporary environmental drivers also varied between species richness, mean range size and mean body size in BRT analysis. While species richness increased with mean annual temperature, mean range size showed an opposite relationship. Mean body size was most clearly associated with the precipitation of the driest month.
Main Conclusions
Our findings showed that the latitudinal species richness gradient was strong, and it was closely related to concomitant variation in temperature, whereas variations in mean range size and mean body size were more complex. These findings suggest that the causes for range size and body size variation in insects may be complex, requiring additional insights from studies conducted at local, regional and continental scales
Airborne laser scanning reveals uniform responses of forest structure to moose (Alces alces) across the boreal forest biome
1. The moose Alces alces is the largest herbivore in the boreal forest biome, where it can have dramatic impacts on ecosystem structure and dynamics. Despite the importance of the boreal forest biome in global carbon cycling, the impacts of moose have only been studied in disparate regional exclosure experiments, leading to calls for common analyses across a biome-wide network of moose exclosures.
2. In this study, we use airborne laser scanning (ALS) to analyse forest canopy re-sponses to moose across 100 paired exclosure-control experimental plots dis-tributed across the boreal biome, including sites in the United States (Isle Royale), Canada (Quebec, Newfoundland), Norway, Sweden and Finland.
3. We test the hypotheses that canopy height, vertical complexity and above- ground biomass (AGB) are all reduced by moose and that the impacts vary with moose density, productivity, temperature and pulse disturbances such as logging and insect outbreaks.
4. We find a surprising convergence in forest canopy response to moose. Moose had negative impacts on canopy height, complexity and AGB as expected. The responses of canopy complexity and AGB were consistent across regions and did not vary along environmental gradients. The difference in canopy height be-tween exclosures and open plots was on average 6 cm per year since the start of exclosure treatment (±2.1 SD). This rate increased with temperature, but only when moose density was high.
5. The difference in AGB between moose exclosures and open plots was 0.306 Mg ha−1 year−1 (±0.079). In browsed plots, stand AGB was 32% of that in the exclosures, a difference of 2.09 Mg ha−1. The uniform response allows scaling of the estimate to a biome-wide impact of moose of the loss of 448 (±115) Tg per year, or 224 Tg of carbon.
6. Synthesis: Analysis of ALS data from distributed exclosure experiments identified a largely uniform response of forest canopies to moose across regions, facilitat-ing scaling of moose impacts across the whole biome. This is an important step towards incorporating the effect of the largest boreal herbivore on the carbon cycling of one of the world's largest terrestrial biomes.publishedVersio
- …