63 research outputs found

    Adenoviral-mediated correction of methylmalonyl-CoA mutase deficiency in murine fibroblasts and human hepatocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methylmalonic acidemia (MMA), a common organic aciduria, is caused by deficiency of the mitochondrial localized, 5'deoxyadenosylcobalamin dependent enzyme, methylmalonyl-CoA mutase (MUT). Liver transplantation in the absence of gross hepatic dysfunction provides supportive therapy and metabolic stability in severely affected patients, which invites the concept of using cell and gene delivery as future treatments for this condition.</p> <p>Methods</p> <p>To assess the effectiveness of gene delivery to restore the defective metabolism in this disorder, adenoviral correction experiments were performed using murine <it>Mut </it>embryonic fibroblasts and primary human methylmalonyl-CoA mutase deficient hepatocytes derived from a patient who harbored two early truncating mutations, E224X and R228X, in the <it>MUT </it>gene. Enzymatic and expression studies were used to assess the extent of functional correction.</p> <p>Results</p> <p>Primary hepatocytes, isolated from the native liver after removal subsequent to a combined liver-kidney transplantation procedure, or <it>Mut </it>murine fibroblasts were infected with a second generation recombinant adenoviral vector that expressed the murine methylmalonyl-CoA mutase as well as eGFP from distinct promoters. After transduction, [1-<sup>14</sup>C] propionate macromolecular incorporation studies and Western analysis demonstrated complete correction of the enzymatic defect in both cell types. Viral reconstitution of enzymatic expression in the human methylmalonyl-CoA mutase deficient hepatocytes exceeded that seen in fibroblasts or control hepatocytes.</p> <p>Conclusion</p> <p>These experiments provide proof of principle for viral correction in methylmalonic acidemia and suggest that hepatocyte-directed gene delivery will be an effective therapeutic treatment strategy in both murine models and in human patients. Primary hepatocytes from a liver that was unsuitable for transplantation provided an important resource for these studies.</p

    Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society

    Get PDF
    The purpose of this statement is to provide consensus-based recommendations for optimal management and care for patients with primary mitochondrial disease. This statement is intended for physicians who are engaged in the diagnosis and management of these patients. Working group members were appointed by the Mitochondrial Medicine Society. The panel included members with several different areas of expertise. The panel members utilized surveys and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Consensus-based recommendations are provided for the routine care and management of patients with primary genetic mitochondrial disease

    The Global Regulator Ler Is Necessary for Enteropathogenic Escherichia coli Colonization of Caenorhabditis elegans

    No full text
    Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries and is useful for general investigations of the bacterial infection process. However, the study of the molecular pathogenesis of EPEC has been hampered by the lack of genetically tractable, convenient animal models. We have therefore developed the use of the nematode Caenorhabditis elegans as a small animal model of infection for this diarrheal pathogen. We found that nematodes died faster on nematode growth medium in the presence of EPEC pathogens than in the presence of the laboratory control strain MG1655. Increased numbers of pathogens in the gut, determined by standard plate count assays and fluorescence microscopy using green fluorescent protein-expressing bacteria, correlated with killing. Deletion of the gene encoding the global regulator Ler severely reduced the ability of EPEC to colonize the nematode gut and could be complemented by providing the ler gene on a multicopy plasmid in trans. Neither the type III secretion system nor the type IV bundle-forming pilus was required for colonization. Combined, the similarities and distinct differences between EPEC infection of nematodes and that of humans offer a unique opportunity to study several stages of the infection process, namely, attachment, colonization, and persistence, in a genetically tractable, inexpensive, and convenient in vivo system
    corecore