4,647 research outputs found

    Sub-milliarcsec-scale structure of the gravitational lens B1600+434

    Full text link
    In the gravitational lens system B1600+434 the brighter image, A, is known to show rapid variability which is not detected in the weaker image, B (Koopmans & de Bruyn 2000). Since correlated variability is one of the fundamental properties of gravitational lensing, it has been proposed that image A is microlensed by stars in the halo of the lensing galaxy (Koopmans & de Bruyn 2000). We present VLBA observations of B1600+434 at 15 GHz with a resolution of 0.5 milliarcsec to determine the source structure at high spatial resolution. The surface brightness of the images are significantly different, with image A being more compact. This is in apparent contradiction with the required property of gravitational lensing that surface brightness be preserved. Our results suggest that both the lensed images may show two-sided elongation at this resolution, a morphology which does not necessarily favour superluminal motion. Instead these data may suggest that image B is scatter-broadened at the lens so that its size is larger than that of A, and hence scintillates less than image A.Comment: 4 pages, 2 figures, accepted in AA Letter

    White Dwarfs: Contributors and Tracers of the Galactic Dark-Matter Halo

    Get PDF
    We examine the claim by Oppenheimer et al. (2001) that the local halo density of white dwarfs is an order of magnitude higher than previously thought. As it stands, the observational data support the presence of a kinematically distinct population of halo white dwarfs at the >99% confidence level. A maximum-likelihood analysis gives a radial velocity dispersion of sigma^h_U=150(+80/-40) km/s and an asymmetric drift of v_a^h=176(+102/-80) km/s, for a Schwarzschild velocity distribution function with sigma_U:sigma_V:sigma_W=1:2/3:1/2. Halo white dwarfs have a local number density of 1.1(+2.1/-0.7)x10^-4 pc-3, which amounts to 0.8(+1.6/-0.5) per cent of the nominal local dark-matter halo density and is 5.0(+9.5/-3.2) times higher and thus only marginally in agreement with previous estimates (all errors indicate the 90% C.L.). We discuss several direct consequences of this white-dwarf population (e.g. microlensing) and postulate a potential mechanism to eject young white dwarfs from the disc to the halo, through the orbital instabilities in triple or multiple stellar systems.Comment: 5 pages, to appear in the proceedings of the Yale Cosmology Workshop "The Shapes of Galaxies and their Halos" (ed. Priya Natarajan); revised numerical results, using a corrected likelihood function (thanks to David Graff and Andy Gould); general conclusions remain simila

    The Kinematics of High Proper Motion Halo White Dwarfs

    Get PDF
    We analyse the kinematics of the entire spectroscopic sample of 99 recently discovered high proper-motion white dwarfs by Oppenheimer et al. using a maximum-likelihood analysis, and discuss the claim that the high-velocity white dwarfs are members of a halo population with a local density at least ten times greater than traditionally assumed. We argue that the observations, as reported, are consistent with the presence of an almost undetected thin disc plus a thick disc, with densities as conventionally assumed. In addition, there is a kinematically distinct, flattened, halo population at the more than 99% confidence level. Surprisingly, the thick disc and halo populations are indistinguishable in terms of luminosity, color and apparent age (1-10 Gyr). Adopting a bimodal, Schwarzschild model for the local velocity ellipsoid, with the ratios sigma_U:sigma_V:sigma_W=1:2/3:1/2, we infer radial velocity dispersions of sigma_U=62(+8/-10) km/s and 150(+80/-40) km/s (90% C.L.) for the local thick disc and halo populations, respectively. The thick disc result agrees with the empirical relation between asymmetric drift and radial velocity dispersion, inferred from local stellar populations. The local thick-disc plus halo density of white dwarfs is n^{td+h}=(1.9+-0.5)x10^-3 pc^-3 (90% C.L.), of which n^{h}=1.1(+2.1/-0.7)x10^-4 pc^-3 (90% C.L.) belongs to the halo, a density about five times higher than previously thought. (Abridged)Comment: 19 pages, 11 figures; submitted to MNRA

    [Review of: G.C. Loury, T. Modood (2005) Ethnicity, social mobility and public policy]

    Get PDF
    International audienc

    Testing Verlinde's emergent gravity in early-type galaxies

    Get PDF
    Verlinde derived gravity as an emergent force from the information flow, through two-dimensional surfaces and recently, by a priori postulating the entanglement of information in 3D space, he derived the effect of the gravitational potential from dark matter (DM) as the entropy displacement of dark energy by baryonic matter. In Emergent Gravity (EG) this apparent DM depends only on the baryonic mass distribution and the present-day value of the Hubble parameter. In this paper we test the EG proposition, formalized by Verlinde for a spherical and isolated mass distribution, using the central velocity dispersion, σ\sigma and the light distribution in a sample of 4260 massive and local early-type galaxies (ETGs) from the SPIDER sample. Our results remain unaltered if we consider the sample of 807 roundest field galaxies. We derive the predictions by EG for the stellar mass-to-light ratio (M/L) and the Initial Mass Function (IMF), and compare them with the same inferences derived from a) DM-based models, b) MOND and c) stellar population models. We demonstrate that, consistently with a classical Newtonian framework with a DM halo component, or alternative theories of gravity as MOND, the central dynamics can be fitted if the IMF is assumed non-universal. The results can be interpreted with a IMF lighter than a standard Chabrier at low-σ\sigma, and bottom-heavier IMFs at larger σ\sigma. We find lower, but still acceptable, stellar M/L in EG theory, if compared with the DM-based NFW model and with MOND. The results from EG are comparable to what is found if the DM haloes are adiabatically contracted and with expectations from spectral gravity-sensitive features. If the strain caused by the entropy displacement would be not maximal, as adopted in the current formulation, then the dynamics of ETGs could be reproduced with larger M/L. (abridged)Comment: 12 pages, 2 figures, submitted to MNRAS. The updated manuscript presents significantly altered conclusions, after discovering an internal bug in an older version of the Mathematica package, leading to incorrect numerical results when calculating the derivatives of Gamma function

    The QED Structure of the Photon

    Get PDF
    Measurements of the QED structure of the photon based on the reaction ee --> ee \gamma(*)(P^2)\gamma*(Q^2) --> ee mumu are discussed. This review is an update of the discussion of the results on the QED structure of the photon presented in Refs.[1], and covers the published measurements of the photon structure functions F_2, F_A nd F_B and of the differential cross-section dsig/dx for the exchange of two virtual photons.Comment: Invited talk given at the 7th International Workshop on Deep Inelastic Scattering and QCD, April 19 to 23, 1999, Zeuthen, to appear in the proceedings. 8pages 4 figure

    Gravitational lensing statistics with extragalactic surveys. II. Analysis of the Jodrell Bank-VLA Astrometric Survey

    Get PDF
    We present constraints on the cosmological constant λ0\lambda_{0} from gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey (JVAS). Although this is the largest gravitational lens survey which has been analysed, cosmological constraints are only comparable to those from optical surveys. This is due to the fact that the median source redshifts of JVAS are lower, which leads to both relatively fewer lenses in the survey and a weaker dependence on the cosmological parameters. Although more approximations have to be made than is the case for optical surveys, the consistency of the results with those from optical gravitational lens surveys and other cosmological tests indicate that this is not a major source of uncertainty in the results. However, joint constraints from a combination of radio and optical data are much tighter. Thus, a similar analysis of the much larger Cosmic Lens All-Sky Survey should provide even tighter constraints on the cosmological constant, especially when combined with data from optical lens surveys. At 95% confidence, our lower and upper limits on λ0Ω0\lambda_{0}-\Omega_{0}, using the JVAS lensing statistics information alone, are respectively -2.69 and 0.68. For a flat universe, these correspond to lower and upper limits on \lambda_{0} of respectively -0.85 and 0.84. Using the combination of JVAS lensing statistics and lensing statistics from the literature as discussed in Quast & Helbig (Paper I) the corresponding λ0Ω0\lambda_{0}-\Omega_{0} values are -1.78 and 0.27. For a flat universe, these correspond to lower and upper limits on λ0\lambda_{0} of respectively -0.39 and 0.64.Comment: LaTeX, 9 pages, 18 PostScript files in 6 figures. Paper version available on request. Data available from http://gladia.astro.rug.nl:8000/ceres/data_from_papers/papers.htm

    Hierarchical Bayesian inference of the Initial Mass Function in Composite Stellar Populations

    Get PDF
    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework we use a parameterized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding \sim75.Comment: Accepted for publication in MNRAS, 16 pages, 8 figure
    corecore