72 research outputs found
Fractional behaviour at cyclic stretch-bending
The fractional behaviour at cyclic stretch-bending has been studied by performing tensile tests at long specimens that are cyclically bent at the same time, on mild steel, dual-phase steel, stainless steel, aluminium and brass. Several types of fracture are observed, these are discussed, as are the underlying mechanisms. The results agree with those obtained with 900 bending tests, concluding that the fracture will be orientated at 900 if the deformation is localized into a small transverse zone. There is a relation be-tween the formability and a certain fracture type, also microscopic examination revealed differences, but no conclusive explanation could be give
The second flight of the SUNRISE balloon-borne solar observatory: overview of instrument updates, the flight, the data and first results
The SUNRISE balloon-borne solar observatory, consisting of a 1~m aperture
telescope that provided a stabilized image to a UV filter imager and an imaging
vector polarimeter, carried out its second science flight in June 2013. It
provided observations of parts of active regions at high spatial resolution,
including the first high-resolution images in the Mg~{\sc ii}~k line. The
obtained data are of very high quality, with the best UV images reaching the
diffraction limit of the telescope at 3000~\AA\ after Multi-Frame Blind
Deconvolution reconstruction accounting for phase-diversity information. Here a
brief update is given of the instruments and the data reduction techniques,
which includes an inversion of the polarimetric data. Mainly those aspects that
evolved compared with the first flight are described. A tabular overview of the
observations is given. In addition, an example time series of a part of the
emerging active region NOAA AR~11768 observed relatively close to disk centre
is described and discussed in some detail. The observations cover the pores in
the trailing polarity of the active region, as well as the polarity inversion
line where flux emergence was ongoing and a small flare-like brightening
occurred in the course of the time series. The pores are found to contain
magnetic field strengths ranging up to 2500~G and, while large pores are
clearly darker and cooler than the quiet Sun in all layers of the photosphere,
the temperature and brightness of small pores approach or even exceed those of
the quiet Sun in the upper photosphere.Comment: Accepted for publication in The Astrophysical Journa
The Sunrise Mission
The first science flight of the balloon-borne \Sunrise telescope took place
in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern
Canada. We describe the scientific aims and mission concept of the project and
give an overview and a description of the various hardware components: the 1-m
main telescope with its postfocus science instruments (the UV filter imager
SuFI and the imaging vector magnetograph IMaX) and support instruments (image
stabilizing and light distribution system ISLiD and correlating wavefront
sensor CWS), the optomechanical support structure and the instrument mounting
concept, the gondola structure and the power, pointing, and telemetry systems,
and the general electronics architecture. We also explain the optimization of
the structural and thermal design of the complete payload. The preparations for
the science flight are described, including AIV and ground calibration of the
instruments. The course of events during the science flight is outlined, up to
the recovery activities. Finally, the in-flight performance of the
instrumentation is briefly summarized.Comment: 35 pages, 17 figure
Numerical analysis of different heating systems for warm sheet metal forming
The main goal of this study is to present an analysis
of different heating methods frequently used in laboratory
scale and in the industrial practice to heat blanks at warm
temperatures. In this context, the blank can be heated inside
the forming tools (internal method) or using a heating system
(external method). In order to perform this analysis, a finite
element model is firstly validated with the simulation of the
direct resistance system used in a Gleeble testing machine.
The predicted temperature was compared with the temperature
distribution recorded experimentally and a good agreement
was found. Afterwards, a finite element model is used to
predict the temperature distribution in the blank during the
heating process, when using different heating methods. The
analysis also includes the evaluation of a cooling phase associated
to the transport phase for the external heating methods.
The results of this analysis show that neglecting the heating
phase and a transport phase could lead to inaccuracies in the
simulation of the forming phase.The authors gratefully acknowledge the financial
support of the Portuguese Foundation for Science and Technology (FCT)
under project PTDC/EMS-TEC/1805/2012 and by FEDER funds
through the program COMPETE—Programa Operacional Factores de
Competitividade, under the project CENTRO-07-0224-FEDER-002001
(MT4MOBI). The authors would like to thank Prof. A. Andrade-Campos
for helpful contributions on the development of the finite element code
presented in this work.info:eu-repo/semantics/publishedVersio
Magnetic fields inferred by Solar Orbiter: A comparison between SO/PHI-HRT and SDO/HMI
The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic
Imager on board the Solar Orbiter spacecraft (SO/PHI) and the Helioseismic and
Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) both infer
the photospheric magnetic field from polarised light images. SO/PHI is the
first magnetograph to move out of the Sun--Earth line and will provide
unprecedented access to the Sun's poles. This provides excellent opportunities
for new research wherein the magnetic field maps from both instruments are used
simultaneously. We aim to compare the magnetic field maps from these two
instruments and discuss any possible differences between them. We used data
from both instruments obtained during Solar Orbiter's inferior conjunction on 7
March 2022. The HRT data were additionally treated for geometric distortion and
degraded to the same resolution as HMI. The HMI data were re-projected to
correct for the separation between the two observatories.
SO/PHI-HRT and HMI produce remarkably similar line-of-sight magnetograms, with
a slope coefficient of , an offset below G, and a Pearson correlation
coefficient of . However, SO/PHI-HRT infers weaker line-of-sight fields
for the strongest fields. As for the vector magnetic field, SO/PHI-HRT was
compared to both the -second and -second HMI vector magnetic field:
SO/PHI-HRT has a closer alignment with the -second HMI vector. In the weak
signal regime ( G), SO/PHI-HRT measures stronger and more horizontal
fields than HMI, very likely due to the greater noise in the SO/PHI-HRT data.
In the strong field regime ( G), HRT infers lower field strengths
but with similar inclinations (a slope of ) and azimuths (a slope of
). The slope values are from the comparison with the HMI -second
vector.Comment: 10 pages, 5 figures, accepted for publication in A&A; manuscript is a
part of Astronomy & Astrophysics special issue: Solar Orbiter First Results
(Nominal Mission Phase
Recommended from our members
The Sunrise Mission
The first science flight of the balloon-borne Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is discussed. © 2010 The Author(s)
Intensity contrast of solar network and faculae close to the solar limb, observed from two vantage points
The brightness of faculae and network depends on the angle at which they are
observed and the magnetic flux density. Close to the limb, assessment of this
relationship has until now been hindered by the increasingly lower signal in
magnetograms. This preliminary study aims at highlighting the potential of
using simultaneous observations from different vantage points to better
determine the properties of faculae close to the limb. We use data from the
Solar Orbiter/Polarimetric and Helioseismic Imager (SO/PHI), and the Solar
Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI), recorded at
angular separation of their lines of sight at the Sun. We use
continuum intensity observed close to the limb by SO/PHI and complement it with
the co-observed from SDO/HMI, originating closer to disc centre
(as seen by SDO/HMI), thus avoiding the degradation of the magnetic field
signal near the limb. We derived the dependence of facular brightness in the
continuum on disc position and magnetic flux density from the combined
observations of SO/PHI and SDO/HMI. Compared with a single point of view, we
were able to obtain contrast values reaching closer to the limb and to lower
field strengths. We find the general dependence of the limb distance at which
the contrast is maximum on the flux density to be at large in line with single
viewpoint observations, in that the higher the flux density is, the closer the
turning point lies to the limb. There is a tendency, however, for the maximum
to be reached closer to the limb when determined from two vantage points. We
note that due to the preliminary nature of this study, these results must be
taken with caution. Our analysis shows that studies involving two viewpoints
can significantly improve the detection of faculae near the solar limb and the
determination of their brightness contrast relative to the quiet Sun
The ratio of horizontal to vertical displacement in solar oscillations estimated from combined SO/PHI and SDO/HMI observations
In order to make accurate inferences about the solar interior using
helioseismology, it is essential to understand all the relevant physical
effects on the observations. One effect to understand is the (complex-valued)
ratio of the horizontal to vertical displacement of the p- and f-modes at the
height at which they are observed. Unfortunately, it is impossible to measure
this ratio directly from a single vantage point, and it has been difficult to
disentangle observationally from other effects. In this paper we attempt to
measure the ratio directly using 7.5 hours of simultaneous observations from
the Polarimetric and Helioseismic Imager on board Solar Orbiter and the
Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. While
image geometry problems make it difficult to determine the exact ratio, it
appears to agree well with that expected from adiabatic oscillations in a
standard solar model. On the other hand it does not agree with a commonly used
approximation, indicating that this approximation should not be used in
helioseismic analyses. In addition, the ratio appears to be real-valued.Comment: Accepted for publication in Astronomy & Astrophysics. 8 pages, 8
figure
Wavefront error of PHI/HRT on Solar Orbiter at various heliocentric distances
We use wavefront sensing to characterise the image quality of the the High
Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (SO/PHI)
data products during the second remote sensing window of the Solar Orbiter (SO)
nominal mission phase. Our ultimate aims are to reconstruct the HRT data by
deconvolving with the HRT point spread function (PSF) and to correct for the
effects of optical aberrations on the data. We use a pair of focused--defocused
images to compute the wavefront error and derive the PSF of HRT by means of a
phase diversity (PD) analysis. The wavefront error of HRT depends on the
orbital distance of SO to the Sun. At distances \,au, the wavefront error
is small, and stems dominantly from the inherent optical properties of HRT. At
distances \,au, the thermo-optical effect of the Heat Rejection Entrance
Window (HREW) becomes noticeable. We develop an interpolation scheme for the
wavefront error that depends on the thermal variation of the HREW with the
distance of SO to the Sun. We also introduce a new level of image
reconstruction, termed `aberration correction', which is designed to reduce the
noise caused by image deconvolution while removing the aberrations caused by
the HREW. The computed PSF via phase diversity significantly reduces the
degradation caused by the HREW in the near-perihelion HRT data. In addition,
the aberration correction increases the noise by a factor of only
compared to the factor of increase that results from the usual PD
reconstructions
- …