6,054 research outputs found
High-Load, Hybrid Si-ROMP Reagents
The combination of norbornenyl-tagged (Nb-tagged) silica particles and functionalized Nb-tagged monomers for the generation of hybrid Si-ROMP reagents and scavengers is reported. Specifically Si-ROMP-derived bis-acid chloride, dichlorotriazine and triphenylphosphine scavenger/reagents have been grafted from the surface of silica particles utilizating surface-initiated, ring-opening metathesis polymerization (ROMP). These hybridpolymeric materials combine the physical properties of current immobilized silica reagents and represent a key advancement in load by merging the inherent tunable properties of the ROMP-derived oligomers with silica supports for application in parallel synthesis
High-energy gamma-ray observations of the accreting black hole V404 Cygni during its June 2015 outburst
We report on Fermi/Large Area Telescope observations of the accreting black
hole low-mass X-ray binary V404 Cygni during its outburst in June-July 2015.
Detailed analyses reveal a possible excess of -ray emission on 26 June
2015, with a very soft spectrum above MeV, at a position consistent with
the direction of V404 Cyg (within the confidence region and a chance
probability of ). This emission cannot be associated with any
previously-known Fermi source. Its temporal coincidence with the brightest
radio and hard X-ray flare in the lightcurve of V404 Cyg, at the end of the
main active phase of its outburst, strengthens the association with V404 Cyg.
If the -ray emission is associated with V404 Cyg, the simultaneous
detection of keV annihilation emission by INTEGRAL requires that the
high-energy rays originate away from the corona, possibly in a
Blandford-Znajek jet. The data give support to models involving a
magnetically-arrested disk where a bright -ray jet can re-form after
the occurrence of a major transient ejection seen in the radio.Comment: 5 pages, 3 figures, accepted for publication in MNRA
Pairing Correlations in the Two-Dimensional Hubbard Model
We present the results of a quantum Monte Carlo study of the extended and
the pairing correlation functions for the two-dimensional Hubbard
model, computed with the constrained-path method. For small lattice sizes and
weak interactions, we find that the pairing correlations are
stronger than the extended pairing correlations and are positive when the
pair separation exceeds several lattice constants. As the system size or the
interaction strength increases, the magnitude of the long-range part of both
correlation functions vanishes.Comment: 4 pages, RevTex, 4 figures included; submitted to Phys. Rev. Let
Study of composition of cosmic rays with energy .7 E 3 Ee
The longitudinal shower development of extensive air showers (EAS) observed in the fly's eye is used to determine the distribution of X sub max, the depth in the atmosphere of the EAS maximum. Data and Monte Carlo simulations of proton and iron primaries are compared. A substantial contribution from light primaries is noted
A Survey of Molecular Hydrogen in the Crab Nebula
We have carried out a near-infrared, narrow-band imaging survey of the Crab
Nebula, in the H2 2.12 micron and Br-gamma 2.17 micron lines, using the Spartan
Infrared camera on the SOAR Telescope. Over a 2.8' x 5.1' area that encompasses
about 2/3 of the full visible extent of the Crab, we detect 55 knots that emit
strongly in the H2 line. We catalog the observed properties of these knots. We
show that they are in or next to the filaments that are seen in
optical-passband emission lines. Comparison to HST [S II] and [O III] images
shows that the H2 knots are strongly associated with compact regions of
low-ionization gas. We also find evidence of many additional, fainter H2
features, both discrete knots and long streamers following gas that emits
strongly in [S II]. A pixel-by-pixel analysis shows that about 6 percent of the
Crab's projected surface area has significant H2 emission that correlates with
[S II] emission. We measured radial velocities of the [S II] lambda6716
emission lines from 47 of the cataloged knots and find that most are on the far
(receding) side of the nebula. We also detect Br-gamma emission. It is right at
the limit of our survey, and our Br-gamma filter cuts off part of the expected
velocity range. But clearly the Br-gamma emission has a quite different
morphology than the H2 knots, following the long linear filaments that are seen
in H-alpha and in [O III] optical emission lines.Comment: Accepted for publication in the ApJ
Characterisation of alpha-dystrobrevin in muscle
Dystrophin-related and associated proteins are important for the formation and maintenance of the mammalian neuromuscular junction. Initial studies in the electric organ of Torpedo californica showed that the dystrophin-related protein dystrobrevin (87K) co-purifies with the acetylcholine receptors and other postsynaptic proteins. Dystrobrevin is also a major phosphotyrosine-containing protein in the postsynaptic membrane. Since inhibitors of tyrosine protein phosphorylation block acetylcholine receptor clustering in cultured muscle cells, we examined the role of alpha-dystrobrevin during synapse formation and in response to agrin. Using specific antibodies, we show that C2 myoblasts and early myotubes only produce alpha-dystrobrevin-1, the mammalian orthologue of Torpedo dystrobrevin, whereas mature skeletal muscle expresses three distinct alpha-dystrobrevin isoforms. In myotubes, alpha-dystrobrevin-1 is found on the cell surface and also in acetylcholine receptor-rich domains. Following agrin stimulation, alpha-dystrobrevin-1 becomes re-localised beneath the cell surface into macroclusters that contain acetylcholine receptors and another dystrophin-related protein, utrophin. This redistribution is not associated with tyrosine phosphorylation of alpha-dystrobrevin-1 by agrin. Furthermore, we show that alpha-dystrobrevin-1 is associated with both utrophin in C2 cells and dystrophin in mature skeletal muscle. Thus alpha-dystrobrevin-1 is a component of two protein complexes in muscle, one with utrophin at the neuromuscular junction and the other with dystrophin at the sarcolemma. These results indicate that alpha-dystrobrevin-1 is not involved in the phosphorylation-dependent, early stages of receptor clustering, but rather in the stabilisation and maturation of clusters, possibly via an interaction with utrophin
Implementation of a closed-loop structural control system using wireless sensor networks
Wireless sensor networks have rapidly matured in recent years to offer data acquisition capabilities on par with those of traditional tethered data acquisition systems. Entire structural monitoring systems assembled from wireless sensors have proven to be low cost, easy to install, and accurate. However, the functionality of wireless sensors can be further extended to include actuation capabilities. Wireless sensors capable of actuating a structure could serve as building blocks of future generations of structural control systems. In this study, a wireless sensor prototype capable of data acquisition, computational analysis and actuation is proposed for use in a real-time structural control system. The performance of a wireless control system is illustrated using a full-scale structure controlled by a semi-active magnetorheological (MR) damper and a network of wireless sensors. One wireless sensor designated as a controller automates the task of collecting state data, calculating control forces, and issuing commands to the MR damper, all in real time. Additional wireless sensors are installed to measure the acceleration and velocity response of each system degree of freedom. Base motion is applied to the structure to simulate seismic excitations while the wireless control system mitigates inter-storey drift response of the structure. An optimal linear quadratic regulation solution is formulated for embedment within the computational cores of the wireless sensors. Copyright © 2007 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60230/1/214_ftp.pd
Optomechanical coupling and damping of a carbon nanotube quantum dot
Carbon nanotubes are excellent nano-electromechanical systems, combining high
resonance frequency, low mass, and large zero-point motion. At cryogenic
temperatures they display high mechanical quality factors. Equally they are
outstanding single electron devices with well-known quantum levels and have
been proposed for the implementation of charge or spin qubits. The integration
of these devices into microwave optomechanical circuits is however hindered by
a mismatch of scales, between typical microwave wavelengths, nanotube segment
lengths, and nanotube deflections. As experimentally demonstrated recently in
[Blien et al., Nat. Comm. 11, 1363 (2020)], coupling enhancement via the
quantum capacitance allows to circumvent this restriction. Here we extend the
discussion of this experiment. We present the subsystems of the device and
their interactions in detail. An alternative approach to the optomechanical
coupling is presented, allowing to estimate the mechanical zero point motion
scale. Further, the mechanical damping is discussed, hinting at hitherto
unknown interaction mechanisms.Comment: 17 pages, 13 figures, 3 table
An efficient scheme for numerical simulations of the spin-bath decoherence
We demonstrate that the Chebyshev expansion method is a very efficient
numerical tool for studying spin-bath decoherence of quantum systems. We
consider two typical problems arising in studying decoherence of quantum
systems consisting of few coupled spins: (i) determining the pointer states of
the system, and (ii) determining the temporal decay of quantum oscillations. As
our results demonstrate, for determining the pointer states, the
Chebyshev-based scheme is at least a factor of 8 faster than existing
algorithms based on the Suzuki-Trotter decomposition. For the problems of
second type, the Chebyshev-based approach has been 3--4 times faster than the
Suzuki-Trotter-based schemes. This conclusion holds qualitatively for a wide
spectrum of systems, with different spin baths and different Hamiltonians.Comment: 8 pages (RevTeX), 3 EPS figure
- …