39,216 research outputs found
Recommended from our members
Experimental determination of layer cloud edge charging from cosmic ray ionisation
The cloud-air transition zone at stratiform cloud edges is an electrically active region where droplet charging has been predicted. Cloud edge droplet charging is expected from vertical flow of cosmic ray generated atmospheric ions in the global electric circuit. Experimental confirmation of stratiform cloud edge electrification is presented here, through charge and droplet measurements made within an extensive layer of supercooled stratiform cloud, using a specially designed electrostatic sensor. Negative space charge up to 35 pC mā3 was found in a thin (<100 m) layer at the lower cloud boundary associated with the clear air-cloud conductivity gradient, agreeing closely with space charge predicted from the measured droplet concentration using ion-aerosol theory. Such charge levels carried by droplets are sufficient to influence collision processes between cloud droplets
Recommended from our members
A thermally stable tension meter for atmospheric soundings using kites
Kites offer considerable potential as wind speed sensorsāa role distinct from their traditional use
as instrument-carrying platforms. In the sensor role, wind speed is measured by kite-line tension. A
kite tether line tension meter is described here, using strain gauges mounted on an aluminum ring
in a Wheatstone bridge electronic circuit. It exhibits a linear response to tension 19.5 mV Nā1
with good thermal stability mean drift of ā0.18 N Ā°Cā1 over 5ā45 Ā°C temperature range and a
rapid time response 0.2 s or better. Field comparisons of tether line tension for a Rokkaku kite with
a fixed tower sonic anemometer show an approximately linear tension-wind speed relationship over
the range 1ā6 msā1. Ā© 2010 American Institute of Physics. doi:10.1063/1.346556
Recommended from our members
Observations of Saharan dust layer electrification
Electrification of atmospheric dust influences the coagulation, wet removal and fall speeds of dust particles. Alignment of dust particles can also occur in fair weather atmospheric electrical conditions if the particles are charged. However, very few electrical measurements made in elevated dust layers exist. Balloon-borne charge and particle instrumentation have been used to investigate the electrical properties of elevated Saharan dust layers. Soundings from the Cape Verde Islands, which experience frequent Saharan dust outbreaks, intercepted several dust layers. Two balloon soundings during summer 2009 detected dust particles in layers up to 4 km altitude. Simultaneous electrical measurements showed charge inside the dust layers, with a maximum measured charge density of 25 pC m ā 3, sufficient to influence wet removal processes
Stark ladders as tunable far-infrared emitters
A superlattice of GaAs/Ga(1 ā x)Al(x)As quantum wells forms a Stark ladder under the influence of a perpendicular electric field. A two level incoherent emitter system, formed by radiative intersubband transitions between adjacent wells, is investigated as a tunable far-infrared radiation source. Intersubband transition rates are calculated at 4, 77, and 300 K for applied fields from 0 to 40 kV cm(ā1). It is shown that the quantum efficiency of the radiative emission reaches a maximum at low temperatures for a field of 32 kV cm(ā1). Under these conditions the emission wavelength is 38 Āµm with an estimated power output of 1.1 mW. Ā© 1998 American Institute of Physics
Analytical Hartree-Fock gradients for periodic systems
We present the theory of analytical Hartree-Fock gradients for periodic
systems as implemented in the code CRYSTAL. We demonstrate how derivatives of
the integrals can be computed with the McMurchie-Davidson algorithm. Highly
accurate gradients with respect to nuclear coordinates are obtained for systems
periodic in 0,1,2 or 3 dimensions.Comment: accepted by International Journal of Quantum Chemistr
Gamma-Ray Burst Spectral Features: Interpretation as X-ray Emission From A Photoionized Plasma
Numerous reports have been made of features, either in emission or
absorption, in the 10 - 1000 keV spectra of some gamma-ray bursts. Originally
interpreted in the context of Galactic neutron star models as cyclotron line
emission and annihilation features, the recent demonstration that
the majority of GRBs lie at cosmological distances make these explanations
unlikely. In this letter, we adopt a relativistic fireball model for
cosmological GRBs in which dense, metal rich blobs or filaments of plasma are
entrained in the relativistic outflow. In the context of this model, we
investigate the conditions under which broadband features, similar to those
detected, can be observed. We find a limited region of parameter space capable
of reproducing the observed GRB spectra. Finally, we discuss possible
constraints further high-energy spectral observations could place on fireball
model parameters.Comment: Accepted for publication in Astrophysical Journal Letters Four pages,
2 figure
Implications of Privacy Needs and Interpersonal Distancing Mechanisms for Space Station Design
The literature on privacy needs, personal space, interpersonal distancing, and crowding is reveiwed with special reference to spaceflight and spaceflight analogous conditions. A quantitative model is proposed for understanding privacy, interpersonal distancing, and performance. The implications for space station design is described
Implications of privacy needs and interpersonal distancing mechanisms for space station design
Privacy needs, or the need of people to regulate their degree of contact with one another, and interpersonal distancing mechanisms, which serve to satisfy these needs, are common in all cultures. Isolation, confinement, and other conditions accociated with space flight may at once accentuate privacy needs and limit the availability of certain common interpersonal contact. Loneliness occurs when people have less contact with one another than they desire. Crowding occurs when people have more contact with one another than they desire. Crowding, which is considered the greater threat to members of isolated and confined groups, can contribute to stress, a low quality of life, and poor performance. Drawing on the general literature on privacy, personal space, and interpersonal distancing, and on specialized literature on life aboard spacecraft and in spacecraft-analogous environments, a quantitative model for understanding privacy, interpersonal distancing, loneliness, and crowding was developed and the practical implications of this model for space station design were traced
- ā¦