21,890 research outputs found
Modulated Branching Processes, Origins of Power Laws and Queueing Duality
Power law distributions have been repeatedly observed in a wide variety of
socioeconomic, biological and technological areas. In many of the observations,
e.g., city populations and sizes of living organisms, the objects of interest
evolve due to the replication of their many independent components, e.g.,
births-deaths of individuals and replications of cells. Furthermore, the rates
of the replication are often controlled by exogenous parameters causing periods
of expansion and contraction, e.g., baby booms and busts, economic booms and
recessions, etc. In addition, the sizes of these objects often have reflective
lower boundaries, e.g., cities do not fall bellow a certain size, low income
individuals are subsidized by the government, companies are protected by
bankruptcy laws, etc.
Hence, it is natural to propose reflected modulated branching processes as
generic models for many of the preceding observations. Indeed, our main results
show that the proposed mathematical models result in power law distributions
under quite general polynomial Gartner-Ellis conditions, the generality of
which could explain the ubiquitous nature of power law distributions. In
addition, on a logarithmic scale, we establish an asymptotic equivalence
between the reflected branching processes and the corresponding multiplicative
ones. The latter, as recognized by Goldie (1991), is known to be dual to
queueing/additive processes. We emphasize this duality further in the
generality of stationary and ergodic processes.Comment: 36 pages, 2 figures; added references; a new theorem in Subsection
4.
Characterizing Heavy-Tailed Distributions Induced by Retransmissions
Consider a generic data unit of random size L that needs to be transmitted
over a channel of unit capacity. The channel availability dynamics is modeled
as an i.i.d. sequence {A, A_i},i>0 that is independent of L. During each period
of time that the channel becomes available, say A_i, we attempt to transmit the
data unit. If L<A_i, the transmission was considered successful; otherwise, we
wait for the next available period and attempt to retransmit the data from the
beginning. We investigate the asymptotic properties of the number of
retransmissions N and the total transmission time T until the data is
successfully transmitted. In the context of studying the completion times in
systems with failures where jobs restart from the beginning, it was shown that
this model results in power law and, in general, heavy-tailed delays. The main
objective of this paper is to uncover the detailed structure of this class of
heavy-tailed distributions induced by retransmissions. More precisely, we study
how the functional dependence between P[L>x] and P[A>x] impacts the
distributions of N and T. In particular, we discover several functional
criticality points that separate classes of different functional behavior of
the distribution of N. We also discuss the engineering implications of our
results on communication networks since retransmission strategy is a
fundamental component of the existing network protocols on all communication
layers, from the physical to the application one.Comment: 39 pages, 2 figure
The vortex dynamics of a Ginzburg-Landau system under pinning effect
It is proved that the vortices are attracted by impurities or inhomogeities
in the superconducting materials. The strong H^1-convergence for the
corresponding Ginzburg-Landau system is also proved.Comment: 23page
Learning Loosely Connected Markov Random Fields
We consider the structure learning problem for graphical models that we call
loosely connected Markov random fields, in which the number of short paths
between any pair of nodes is small, and present a new conditional independence
test based algorithm for learning the underlying graph structure. The novel
maximization step in our algorithm ensures that the true edges are detected
correctly even when there are short cycles in the graph. The number of samples
required by our algorithm is C*log p, where p is the size of the graph and the
constant C depends on the parameters of the model. We show that several
previously studied models are examples of loosely connected Markov random
fields, and our algorithm achieves the same or lower computational complexity
than the previously designed algorithms for individual cases. We also get new
results for more general graphical models, in particular, our algorithm learns
general Ising models on the Erdos-Renyi random graph G(p, c/p) correctly with
running time O(np^5).Comment: 45 pages, minor revisio
Q-CSMA: Queue-Length Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low Delay in Wireless Networks
Recently, it has been shown that CSMA-type random access algorithms can
achieve the maximum possible throughput in ad hoc wireless networks. However,
these algorithms assume an idealized continuous-time CSMA protocol where
collisions can never occur. In addition, simulation results indicate that the
delay performance of these algorithms can be quite bad. On the other hand,
although some simple heuristics (such as distributed approximations of greedy
maximal scheduling) can yield much better delay performance for a large set of
arrival rates, they may only achieve a fraction of the capacity region in
general. In this paper, we propose a discrete-time version of the CSMA
algorithm. Central to our results is a discrete-time distributed randomized
algorithm which is based on a generalization of the so-called Glauber dynamics
from statistical physics, where multiple links are allowed to update their
states in a single time slot. The algorithm generates collision-free
transmission schedules while explicitly taking collisions into account during
the control phase of the protocol, thus relaxing the perfect CSMA assumption.
More importantly, the algorithm allows us to incorporate mechanisms which lead
to very good delay performance while retaining the throughput-optimality
property. It also resolves the hidden and exposed terminal problems associated
with wireless networks.Comment: 12 page
Variational wave functions of a vortex in cyclotron motion
In two dimensions the microscopic theory, which provides a basis for the
naive analogy between a quantized vortex in a superfluid and an electron in an
uniform magnetic field, is presented. A one-to-one correspondence between the
rotational states of a vortex in a cylinder and the cyclotron states of an
electron in the central gauge is found. Like the Landau levels of an electron,
the energy levels of a vortex are highly degenerate. However, the gap between
two adjacent energy levels does not only depend on the quantized circulation,
but also increases with the energy, and scales with the size of the vortex.Comment: LaTeX, 4 pages, 2 EPS figures, To appear in ``Series on Advances in
Quantum Many-Body Theory'' ed. by R.F. Bishop, C.E. Campbell, J.W. Clark and
S. Fantoni (World Scientific, 2000
Direct Detection of Planets Orbiting Large Angular Diameter Stars: Sensitivity of an Internally Occulting Space-based Coronagraph
High-contrast imaging observations of large angular diameter stars enable complementary science questions to be addressed compared to the baseline goals of proposed missions like the Terrestrial Planet Finder-Coronagraph, New World's Observer, and others. Such targets, however, present a practical problem in that finite stellar size results in unwanted starlight reaching the detector, which degrades contrast. In this paper, we quantify the sensitivity, in terms of contrast, of an internally occulting, space-based coronagraph as a function of stellar angular diameter, from unresolved dwarfs to the largest evolved stars. Our calculations show that an assortment of band-limited image masks can accommodate a diverse set of observations to help maximize mission scientific return. We discuss two applications based on the results: the spectro-photometric study of planets already discovered with the radial velocity technique to orbit evolved stars, which we elucidate with the example of Pollux b, and the direct detection of planets orbiting our closest neighbor, α Centauri, whose primary component is on the main sequence but subtends an appreciable angle on the sky. It is recommended that similar trade studies be performed with other promising internal, external, and hybrid occulter designs for comparison, as there is relevance to a host of interesting topics in planetary science and related fields
- …