33,205 research outputs found
The stack resource protocol based on real time transactions
Current hard real time (HRT) kernels have their timely behaviour guaranteed at the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where one can profit by a better and more flexible use of the resources. It is shown that one can improve the flexibility and efficiency of real time kernels and a method is proposed for precise quality of service schedulability analysis of the stack resource protocol. This protocol is generalised by introducing real time transactions, which makes its use straightforward and efficient. Transactions can be refined to nested critical sections if the smallest estimation of blocking is desired. The method can be used for hard real time systems in general and for multimedia systems in particular
The PHMC algorithm for simulations of dynamical fermions: II - Performance analysis
We compare the performance of the PHMC algorithm with the one of the HMC
algorithm in practical simulations of lattice QCD. We show that the PHMC
algorithm can lead to an acceleration of numerical simulations. It is
demonstrated that the PHMC algorithm generates configurations carrying small
isolated eigenvalues of the lattice Dirac operator and hence leads to a
sampling of configuration space that is different from that of the HMC
algorithm.Comment: Latex2e file, 6 figures, 31 page
Detection of a Spin Accumulation in Nondegenerate Semiconductors
Electrical detection of a spin accumulation in a nondegenerate semiconductor using a tunnel barrier and ferromagnetic contact is shown to be fundamentally affected by the energy barrier associated with the depletion region. This prevents the ferromagnet from probing the spin accumulation directly, strongly suppresses the magnetoresistance in current or potentiometric detection, and introduces nonmonotonic variation of spin signals with voltage and temperature. Having no analogue in metallic systems, we identify energy mismatch as an obstacle for spin detection, necessitating control of the energy landscape of spin-tunnel contacts to semiconductors
Sign of tunnel spin polarization of low-work-function Gd/Co nanolayers in a magnetic tunnel junction
Magnetic tunnel junctions having a low-work-function Gd/Co nanolayer at the interface with an Al2O3 tunnel barrier are shown to exhibit both positive and negative values of the tunnel magnetoresistance. The sign of the tunnel spin polarization of the Gd/Co nanolayer electrode depends on the thickness of the Gd and Co layers, temperature, and applied voltage. This reflects the nature of the interaction between the conduction electrons of the rare-earth and transition metals. \u
Non-perturbative running of the average momentum of non-singlet parton densities
We determine non-perturbatively the anomalous dimensions of the second moment
of non-singlet parton densities from a continuum extrapolation of results
computed in quenched lattice simulations at different lattice spacings. We use
a Schr\"odinger functional scheme for the definition of the renormalization
constant of the relevant twist-2 operator. In the region of renormalized
couplings explored, we obtain a good description of our data in terms of a
three-loop expression for the anomalous dimensions. The calculation can be used
for exploring values of the coupling where a perturbative expansion of the
anomalous dimensions is not valid a priori. Moreover, our results provide the
non-perturbative renormalization constant that connects hadron matrix elements
on the lattice, renormalized at a low scale, with the experimental results,
renormalized at much higher energy scales.Comment: Latex2e file, 6 figures, 25 pages, Corrected errors on linear fit in
table 2 and discussion on anomalous dimension of f_
FPT is Characterized by Useful Obstruction Sets
Many graph problems were first shown to be fixed-parameter tractable using
the results of Robertson and Seymour on graph minors. We show that the
combination of finite, computable, obstruction sets and efficient order tests
is not just one way of obtaining strongly uniform FPT algorithms, but that all
of FPT may be captured in this way. Our new characterization of FPT has a
strong connection to the theory of kernelization, as we prove that problems
with polynomial kernels can be characterized by obstruction sets whose elements
have polynomial size. Consequently we investigate the interplay between the
sizes of problem kernels and the sizes of the elements of such obstruction
sets, obtaining several examples of how results in one area yield new insights
in the other. We show how exponential-size minor-minimal obstructions for
pathwidth k form the crucial ingredient in a novel OR-cross-composition for
k-Pathwidth, complementing the trivial AND-composition that is known for this
problem. In the other direction, we show that OR-cross-compositions into a
parameterized problem can be used to rule out the existence of efficiently
generated quasi-orders on its instances that characterize the NO-instances by
polynomial-size obstructions.Comment: Extended abstract with appendix, as accepted to WG 201
Kondo effect and impurity band conduction in Co:TiO2 magnetic semiconductor
The nature of charge carriers and their interaction with local magnetic moments in an oxide magnetic semiconductor is established. For cobalt-doped anatase TiO2 films, we demonstrate conduction in a metallic donor-impurity band. Moreover, we observe a clear signature of the Kondo effect in electrical transport data with remarkably high Kondo temperatures of up to 120 K. This indicates a strong coupling between local Co moments and delocalized electrons in the impurity band
Ten-dimensional wave packet simulations of methane scattering
We present results of wavepacket simulations of scattering of an oriented
methane molecule from a flat surface including all nine internal vibrations. At
a translational energy up to 96 kJ/mol we find that the scattering is almost
completely elastic. Vibrational excitations when the molecule hits the surface
and the corresponding deformation depend on generic features of the potential
energy surface. In particular, our simulation indicate that for methane to
dissociate the interaction of the molecule with the surface should lead to an
elongated equilibrium C--H bond length close to the surface.Comment: RevTeX 15 pages, 3 eps figures: This article may be found at
http://link.aip.org/link/?jcp/109/1966
Self-aligned 0-level sealing of MEMS devices by a two layer thin film reflow process
Many micro electromechanical systems (MEMS) require a vacuum or controlled atmosphere encapsulation in order to ensure either a good performance or an acceptable lifetime of operation. Two approaches for wafer-scale zero-level packaging exist. The most popular approach is based on wafer bonding. Alternatively, encapsulation can be done by the fabrication and sealing of perforated surface micromachined membranes. In this paper, a sealing method is proposed for zero-level packaging using a thin film reflow technique. This sealing method can be done at arbitrary ambient and pressure. Also, it is self-aligned and it can be used for sealing openings directly above the MEMS device. It thus allows for a smaller die area for the sealing ring reducing in this way the device dimensions and costs. The sealing method has been demonstrated with reflowed aluminium, germanium, and boron phosphorous silica glass. This allows for conducting as well as non-conducting sealing layers and for a variety of allowable thermal budgets. The proposed technique is therefore very versatile
- …
