57,016 research outputs found
Exciton and biexciton energies in bilayer systems
We report calculations of the energies of excitons and biexcitons in ideal
two-dimensional bilayer systems within the effective-mass approximation with
isotropic electron and hole masses. The exciton energies are obtained by a
simple numerical integration technique, while the biexciton energies are
obtained from diffusion quantum Monte Carlo calculations. The exciton binding
energy decays as the inverse of the separation of the layers, while the binding
energy of the biexciton with respect to dissociation into two separate excitons
decays exponentially
Parton and Hadron Correlations in Jets
Correlation between shower partons is first studied in high jets. Then
in the framework of parton recombination the correlation between pions in
heavy-ion collisions is investigated. Since thermal partons play very different
roles in central and peripheral collisions, it is found that the correlation
functions of the produced hadrons behave very differently at different
centralities, especially at intermediate . The correlation function that
can best exhibit the distinctive features is suggested. There is not a great
deal of overlap between what we can calculate and what has been measured.
Nevertheless, some aspects of our results compare favorably with experimental
data.Comment: 28 pages in Latex + 13 figures. This is a revised version with
extended discussions added without quantitative changes in the result
Achieving Effective Innovation Based On TRIZ Technological Evolution
Organised by: Cranfield UniversityThis paper outlines the conception of effective innovation and discusses the method to achieve it. Effective
Innovation is constrained on the path of technological evolution so that the corresponding path must be
detected before conceptual design of the product. The process of products technological evolution is a
technical developing process that the products approach to Ideal Final Result (IFR). During the process, the
sustaining innovation and disruptive innovation carry on alternately. By researching and forecasting potential
techniques using TRIZ technological evolution theory, the effective innovation can be achieved finally.Mori Seiki – The Machine Tool Compan
Evolutionary L∞ identification and model reduction for robust control
An evolutionary approach for modern robust control oriented system identification and model reduction in the frequency domain is proposed. The technique provides both an optimized nominal model and a 'worst-case' additive or multiplicative uncertainty bounding function which is compatible with robust control design methodologies. In addition, the evolutionary approach is applicable to both continuous- and discrete-time systems without the need for linear parametrization or a confined problem domain for deterministic convex optimization. The proposed method is validated against a laboratory multiple-input multiple-output (MIMO) test rig and benchmark problems, which show a higher fitting accuracy and provides a tighter L�¢���� error bound than existing methods in the literature do
A heterotic sigma model with novel target geometry
We construct a (1,2) heterotic sigma model whose target space geometry
consists of a transitive Lie algebroid with complex structure on a Kaehler
manifold. We show that, under certain geometrical and topological conditions,
there are two distinguished topological half--twists of the heterotic sigma
model leading to A and B type half--topological models. Each of these models is
characterized by the usual topological BRST operator, stemming from the
heterotic (0,2) supersymmetry, and a second BRST operator anticommuting with
the former, originating from the (1,0) supersymmetry. These BRST operators
combined in a certain way provide each half--topological model with two
inequivalent BRST structures and, correspondingly, two distinct perturbative
chiral algebras and chiral rings. The latter are studied in detail and
characterized geometrically in terms of Lie algebroid cohomology in the
quasiclassical limit.Comment: 83 pages, no figures, 2 references adde
Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions
We experimentally investigate and utilize electrothermal feedback in a
microwave nanobolometer based on a normal-metal
(\mbox{Au}_{x}\mbox{Pd}_{1-x}) nanowire with proximity-induced
superconductivity. The feedback couples the temperature and the electrical
degrees of freedom in the nanowire, which both absorbs the incoming microwave
radiation, and transduces the temperature change into a radio-frequency
electrical signal. We tune the feedback in situ and access both positive and
negative feedback regimes with rich nonlinear dynamics. In particular, strong
positive feedback leads to the emergence of two metastable electron temperature
states in the millikelvin range. We use these states for efficient threshold
detection of coherent 8.4 GHz microwave pulses containing approximately 200
photons on average, corresponding to 1.1 \mbox{ zJ} \approx 7.0 \mbox{ meV}
of energy
- …