599 research outputs found
System size dependence of freeze-out properties at RHIC
The STAR experiment at RHIC has measured identified pi(+/-), K(+/-) and
p(pbar) spectra and ratios from sqrt(s_NN) = 62.4 and 200 GeV Cu+Cu collisions.
The new Cu+Cu results are studied with hydro-motivated blast-wave and
statistical model frameworks in order to characterize the freeze-out properties
of this system. Along with measurements from Au+Au and p+p collisions, the
obtained freeze-out parameters are discussed as a function of collision energy,
system size, centrality and inferred energy density. This multi-dimensional
systematic study reveals the importance of the collision geometry and furthers
our understanding of the QCD phases.Comment: 6 pages, 6 figures, poster proceedings for the Quark Matter 2006
Conference, Shanghai, China, 14th-20th Novermber 2006, submitted to the
International Journal of Modern Physics
The serial blocking effect: a testbed for the neural mechanisms of temporal-difference learning
Temporal-difference (TD) learning models afford the neuroscientist a theory-driven roadmap in the quest for the neural mechanisms of reinforcement learning. The application of these models to understanding the role of phasic midbrain dopaminergic responses in reward prediction learning constitutes one of the greatest success stories in behavioural and cognitive neuroscience. Critically, the classic learning paradigms associated with TD are poorly suited to cast light on its neural implementation, thus hampering progress. Here, we present a serial blocking paradigm in rodents that overcomes these limitations and allows for the simultaneous investigation of two cardinal TD tenets; namely, that learning depends on the computation of a prediction error, and that reinforcing value, whether intrinsic or acquired, propagates back to the onset of the earliest reliable predictor. The implications of this paradigm for the neural exploration of TD mechanisms are highlighted
Strange Particle Production at RHIC
We report STAR measurements of mid-rapidity yields for the ,
, , , , , and
particles in Cu+Cu and Au+Au GeV
collisions. We show that at a given number of participating nucleons, bulk
strangeness production is higher in Cu+Cu collisions compared to Au+Au
collisions at the same center of mass energy, counter to predictions from the
Canonical formalism. We compare both the Cu+Cu and Au+Au yields to AMPT and
EPOS predictions, and find they reproduce key qualitative aspects of the data.
Finally, we investigate other scaling parameters and find bulk strangeness
production for both the measured data and theoretical predictions, scales
better with the number participants that undergo more than one collision.Comment: Conference proceedings for Hot Quarks 2008, 5 pages and 4 figure
Idylls of socialism : the Sarajevo Documentary School and the problem of the Bosnian sub-proletariat
This historical overview of the Sarajevo Documentary School considers the films, in the light of their recent re-emergence, as indicative of both the legacy of socialist realism (even in the context of Yugoslav media) and attempted social engineering in the Bosnia of the 1960s and 1970s. The argument is made that the documentaries, despite their questionable aesthetic status (in respect of cinma-vrit and ethnography) and problematic ideological strategies and attempted interventions, document a history and offer insights that counter the prevailing revisionist trends in the presentation of Eastern and Central European history
Directed Evolution of Protein-Based Neurotransmitter Sensors for MRI
The production of contrast agents sensitive to neuronal signaling events is a rate-limiting step in the development of molecular-level functional magnetic resonance imaging (molecular fMRI) approaches for studying the brain. High-throughput generation and evaluation of potential probes are possible using techniques for macromolecular engineering of protein-based contrast agents. In an initial exploration of this strategy, we used the method of directed evolution to identify mutants of a bacterial heme protein that allowed detection of the neurotransmitter dopamine in vitro and in living animals. The directed evolution method involves successive cycles of mutagenesis and screening that could be generalized to produce contrast agents sensitive to a variety of molecular targets in the nervous system
The Importance of Correlations and Fluctuations on the Initial Source Eccentricity in High-Energy Nucleus-Nucleus Collisions
In this paper, we investigate various ways of defining the initial source
eccentricity using the Monte Carlo Glauber (MCG) approach. In particular, we
examine the participant eccentricity, which quantifies the eccentricity of the
initial source shape by the major axes of the ellipse formed by the interaction
points of the participating nucleons. We show that reasonable variation of the
density parameters in the Glauber calculation, as well as variations in how
matter production is modeled, do not significantly modify the already
established behavior of the participant eccentricity as a function of collision
centrality. Focusing on event-by-event fluctuations and correlations of the
distributions of participating nucleons we demonstrate that, depending on the
achieved event-plane resolution, fluctuations in the elliptic flow magnitude
lead to most measurements being sensitive to the root-mean-square, rather
than the mean of the distribution. Neglecting correlations among
participants, we derive analytical expressions for the participant eccentricity
cumulants as a function of the number of participating nucleons,
\Npart,keeping non-negligible contributions up to \ordof{1/\Npart^3}. We
find that the derived expressions yield the same results as obtained from
mixed-event MCG calculations which remove the correlations stemming from the
nuclear collision process. Most importantly, we conclude from the comparison
with MCG calculations that the fourth order participant eccentricity cumulant
does not approach the spatial anisotropy obtained assuming a smooth nuclear
matter distribution. In particular, for the Cu+Cu system, these quantities
deviate from each other by almost a factor of two over a wide range in
centrality.Comment: 18 pages, 10 figures, submitted to PR
System size and centrality dependence of charged hadron transverse momentum spectra in Au+Au and Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV
We present transverse momentum distributions of charged hadrons produced in
Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for
transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 <
p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta <
1.4. The nuclear modification factor R_AA is calculated relative to p+p data at
both collision energies as a function of collision centrality. At a given
collision energy and fractional cross-section, R_AA is observed to be
systematically larger in Cu+Cu collisions compared to Au+Au. However, for the
same number of participating nucleons, R_AA is essentially the same in both
systems over the measured range of p_T, in spite of the significantly different
geometries of the Cu+Cu and Au+Au systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions
We present the first measurements of the pseudorapidity distribution of
primary charged particles in Cu+Cu collisions as a function of collision
centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of
pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the rough shape (height and width) of the pseudorapidity distributions are
determined by the number of nucleon participants. More detailed studies reveal
that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity
distributions over the full range of pseudorapidity occurs for the same
Npart/2A value rather than the same Npart value. In other words, it is the
collision geometry rather than just the number of nucleon participants that
drives the detailed shape of the pseudorapidity distribution and its centrality
dependence at RHIC energies.Comment: Submitted to Physical Review Letter
- …