10 research outputs found
Reproducibility of parallel preconditioned conjugate gradient in hybrid programming environments
[EN] The Preconditioned Conjugate Gradient method is often employed for the solution of linear systems of equations arising in numerical simulations of physical phenomena. While being widely used, the solver is also known for its lack of accuracy while computing the residual. In this article, we propose two algorithmic solutions that originate from the ExBLAS project to enhance the accuracy of the solver as well as to ensure its reproducibility in a hybrid MPI + OpenMP tasks programming environment. One is based on ExBLAS and preserves every bit of information until the final rounding, while the other relies upon floating-point expansions and, hence, expands the intermediate precision. Instead of converting the entire solver into its ExBLAS-related implementation, we identify those parts that violate reproducibility/non-associativity, secure them, and combine this with the sequential executions. These algorithmic strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these approaches on two modern HPC systems: both versions deliver reproducible number of iterations, residuals, direct errors, and vector-solutions for the overhead of less than 37.7% on 768 cores.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was partially supported by the European Union's Horizon 2020 research, innovation program under the Marie Sklodowska-Curie grant agreement via the Robust project No. 842528 as well as the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the H2020 EC RIA Programme; in particular, the author gratefully acknowledges the support of Vicenc comma Beltran and the computer resources and technical support provided by BSC. The researchers from Universitat Jaume I (UJI) and Universitat Polit ' ecnica de Valencia (UPV) were supported by MINECO project TIN2017-82972-R. Maria Barreda was also supported by the POSDOC-A/2017/11 project from the Universitat Jaume I.Iakymchuk, R.; Barreda Vayá, M.; Graillat, S.; Aliaga, JI.; Quintana Ortí, ES. (2020). Reproducibility of parallel preconditioned conjugate gradient in hybrid programming environments. International Journal of High Performance Computing Applications. 34(5):502-518. https://doi.org/10.1177/1094342020932650S502518345Aliaga, J. I., Barreda, M., Flegar, G., Bollhöfer, M., & Quintana-Ortí, E. S. (2017). Communication in task-parallel ILU-preconditioned CG solvers using MPI + OmpSs. Concurrency and Computation: Practice and Experience, 29(21), e4280. doi:10.1002/cpe.4280Bailey, D. H. (2013). High-precision computation: Applications and challenges [Keynote I]. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.39Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., … van der Vorst, H. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. doi:10.1137/1.9781611971538Burgess, N., Goodyer, C., Hinds, C. N., & Lutz, D. R. (2019). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. IEEE Transactions on Computers, 68(7), 967-978. doi:10.1109/tc.2018.2855729Carson, E., & Higham, N. J. (2018). Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM Journal on Scientific Computing, 40(2), A817-A847. doi:10.1137/17m1140819Collange, S., Defour, D., Graillat, S., & Iakymchuk, R. (2015). Numerical reproducibility for the parallel reduction on multi- and many-core architectures. Parallel Computing, 49, 83-97. doi:10.1016/j.parco.2015.09.001Dekker, T. J. (1971). A floating-point technique for extending the available precision. Numerische Mathematik, 18(3), 224-242. doi:10.1007/bf01397083Demmel, J., & Hong Diep Nguyen. (2013). Fast Reproducible Floating-Point Summation. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.9Demmel, J., & Nguyen, H. D. (2015). Parallel Reproducible Summation. IEEE Transactions on Computers, 64(7), 2060-2070. doi:10.1109/tc.2014.2345391Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468Hida, Y., Li, X. S., & Bailey, D. H. (s. f.). Algorithms for quad-double precision floating point arithmetic. Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001. doi:10.1109/arith.2001.930115Hunold, S., & Carpen-Amarie, A. (2016). Reproducible MPI Benchmarking is Still Not as Easy as You Think. IEEE Transactions on Parallel and Distributed Systems, 27(12), 3617-3630. doi:10.1109/tpds.2016.2539167IEEE Computer Society (2008) IEEE Standard for Floating-Point Arithmetic. Piscataway: IEEE Standard, pp. 754–2008.Kulisch, U., & Snyder, V. (2010). The exact dot product as basic tool for long interval arithmetic. Computing, 91(3), 307-313. doi:10.1007/s00607-010-0127-7Kulisch, U. (2013). Computer Arithmetic and Validity. doi:10.1515/9783110301793Lawson, C. L., Hanson, R. J., Kincaid, D. R., & Krogh, F. T. (1979). Basic Linear Algebra Subprograms for Fortran Usage. ACM Transactions on Mathematical Software, 5(3), 308-323. doi:10.1145/355841.355847Lutz, D. R., & Hinds, C. N. (2017). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH). doi:10.1109/arith.2017.20Mukunoki, D., Ogita, T., & Ozaki, K. (2020). Reproducible BLAS Routines with Tunable Accuracy Using Ozaki Scheme for Many-Core Architectures. Lecture Notes in Computer Science, 516-527. doi:10.1007/978-3-030-43229-4_44Nguyen, H. D., & Demmel, J. (2015). Reproducible Tall-Skinny QR. 2015 IEEE 22nd Symposium on Computer Arithmetic. doi:10.1109/arith.2015.28Ogita, T., Rump, S. M., & Oishi, S. (2005). Accurate Sum and Dot Product. SIAM Journal on Scientific Computing, 26(6), 1955-1988. doi:10.1137/030601818Ozaki, K., Ogita, T., Oishi, S., & Rump, S. M. (2011). Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications. Numerical Algorithms, 59(1), 95-118. doi:10.1007/s11075-011-9478-1Priest, D. M. (s. f.). Algorithms for arbitrary precision floating point arithmetic. [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic. doi:10.1109/arith.1991.145549Rump, S. M., Ogita, T., & Oishi, S. (2008). Accurate Floating-Point Summation Part I: Faithful Rounding. SIAM Journal on Scientific Computing, 31(1), 189-224. doi:10.1137/050645671Rump, S. M., Ogita, T., & Oishi, S. (2009). Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM Journal on Scientific Computing, 31(2), 1269-1302. doi:10.1137/07068816xRump, S. M., Ogita, T., & Oishi, S. (2010). Fast high precision summation. Nonlinear Theory and Its Applications, IEICE, 1(1), 2-24. doi:10.1587/nolta.1.2Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003Wiesenberger, M., Einkemmer, L., Held, M., Gutierrez-Milla, A., Sáez, X., & Iakymchuk, R. (2019). Reproducibility, accuracy and performance of the Feltor code and library on parallel computer architectures. Computer Physics Communications, 238, 145-156. doi:10.1016/j.cpc.2018.12.00
Hierarchical approach for deriving a reproducible unblocked LU factorization
[EN] We propose a reproducible variant of the unblocked LU factorization for graphics processor units (GPUs). For this purpose, we build upon Level-1/2 BLAS kernels that deliver correctly-rounded and reproducible results for the dot (inner) product, vector scaling, and the matrix-vector product. In addition, we draw a strategy to enhance the accuracy of the triangular solve via iterative refinement. Following a bottom-up approach, we finally construct a reproducible unblocked implementation of the LU factorization for GPUs, which accommodates partial pivoting for stability and can be eventually integrated in a high performance and stable algorithm for the (blocked) LU factorization.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The simulations were performed on resources provided by the Swed-ish National Infrastructure for Computing (SNIC) at PDC Centre for High Performance Computing (PDC-HPC). This work was also granted access to the HPC resources of The Institute for Scientific Computing and Simulation financed by Region Ile-de-France and the project Equip@Meso (reference ANR-10-EQPX-29-01) overseen by the French National Agency for Research (ANR) as part of the Investissements d Avenir pro-gram. This work was also partly supported by the FastRelax (ANR-14-CE25-0018-01) project of ANR.Iakymchuk, R.; Graillat, S.; Defour, D.; Quintana-Orti, ES. (2019). Hierarchical approach for deriving a reproducible unblocked LU factorization. International Journal of High Performance Computing Applications. 33(5):791-803. https://doi.org/10.1177/1094342019832968S791803335Arteaga, A., Fuhrer, O., & Hoefler, T. (2014). Designing Bit-Reproducible Portable High-Performance Applications. 2014 IEEE 28th International Parallel and Distributed Processing Symposium. doi:10.1109/ipdps.2014.127Bientinesi, P., Quintana-Ortí, E. S., & Geijn, R. A. van de. (2005). Representing linear algebra algorithms in code: the FLAME application program interfaces. ACM Transactions on Mathematical Software, 31(1), 27-59. doi:10.1145/1055531.1055533Chohra, C., Langlois, P., & Parello, D. (2016). Efficiency of Reproducible Level 1 BLAS. Lecture Notes in Computer Science, 99-108. doi:10.1007/978-3-319-31769-4_8Collange, S., Defour, D., Graillat, S., & Iakymchuk, R. (2015). Numerical reproducibility for the parallel reduction on multi- and many-core architectures. Parallel Computing, 49, 83-97. doi:10.1016/j.parco.2015.09.001Demmel, J., & Hong Diep Nguyen. (2013). Fast Reproducible Floating-Point Summation. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.9Demmel, J., & Nguyen, H. D. (2015). Parallel Reproducible Summation. IEEE Transactions on Computers, 64(7), 2060-2070. doi:10.1109/tc.2014.2345391Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170Dongarra, J., Hittinger, J., Bell, J., Chacon, L., Falgout, R., Heroux, M., … Wild, S. (2014). Applied Mathematics Research for Exascale Computing. doi:10.2172/1149042Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468Haidar, A., Dong, T., Luszczek, P., Tomov, S., & Dongarra, J. (2015). Batched matrix computations on hardware accelerators based on GPUs. The International Journal of High Performance Computing Applications, 29(2), 193-208. doi:10.1177/1094342014567546Hida, Y., Li, X. S., & Bailey, D. H. (s. f.). Algorithms for quad-double precision floating point arithmetic. Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001. doi:10.1109/arith.2001.930115Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms. doi:10.1137/1.9780898718027Iakymchuk, R., Defour, D., Collange, S., & Graillat, S. (2015). Reproducible Triangular Solvers for High-Performance Computing. 2015 12th International Conference on Information Technology - New Generations. doi:10.1109/itng.2015.63Iakymchuk, R., Defour, D., Collange, S., & Graillat, S. (2016). Reproducible and Accurate Matrix Multiplication. Lecture Notes in Computer Science, 126-137. doi:10.1007/978-3-319-31769-4_11Kulisch, U., & Snyder, V. (2010). The exact dot product as basic tool for long interval arithmetic. Computing, 91(3), 307-313. doi:10.1007/s00607-010-0127-7Li, X. S., Demmel, J. W., Bailey, D. H., Henry, G., Hida, Y., Iskandar, J., … Yoo, D. J. (2002). Design, implementation and testing of extended and mixed precision BLAS. ACM Transactions on Mathematical Software, 28(2), 152-205. doi:10.1145/567806.567808Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., … Torres, S. (2010). Handbook of Floating-Point Arithmetic. doi:10.1007/978-0-8176-4705-6Ogita, T., Rump, S. M., & Oishi, S. (2005). Accurate Sum and Dot Product. SIAM Journal on Scientific Computing, 26(6), 1955-1988. doi:10.1137/030601818Ortega, J. . (1988). The ijk forms of factorization methods I. Vector computers. Parallel Computing, 7(2), 135-147. doi:10.1016/0167-8191(88)90035-xRump, S. M. (2009). Ultimately Fast Accurate Summation. SIAM Journal on Scientific Computing, 31(5), 3466-3502. doi:10.1137/080738490Skeel, R. D. (1979). Scaling for Numerical Stability in Gaussian Elimination. Journal of the ACM, 26(3), 494-526. doi:10.1145/322139.322148Zhu, Y.-K., & Hayes, W. B. (2010). Algorithm 908. ACM Transactions on Mathematical Software, 37(3), 1-13. doi:10.1145/1824801.182481
On the Performance Prediction of BLAS-based Tensor Contractions
Tensor operations are surging as the computational building blocks for a
variety of scientific simulations and the development of high-performance
kernels for such operations is known to be a challenging task. While for
operations on one- and two-dimensional tensors there exist standardized
interfaces and highly-optimized libraries (BLAS), for higher dimensional
tensors neither standards nor highly-tuned implementations exist yet. In this
paper, we consider contractions between two tensors of arbitrary dimensionality
and take on the challenge of generating high-performance implementations by
resorting to sequences of BLAS kernels. The approach consists in breaking the
contraction down into operations that only involve matrices or vectors. Since
in general there are many alternative ways of decomposing a contraction, we are
able to methodically derive a large family of algorithms. The main contribution
of this paper is a systematic methodology to accurately identify the fastest
algorithms in the bunch, without executing them. The goal is instead
accomplished with the help of a set of cache-aware micro-benchmarks for the
underlying BLAS kernels. The predictions we construct from such benchmarks
allow us to reliably single out the best-performing algorithms in a tiny
fraction of the time taken by the direct execution of the algorithms.Comment: Submitted to PMBS1
Interoperability strategies for GASPI and MPI in large-scale scientific applications
One of the main hurdles of partitioned global address space (PGAS) approaches is the dominance of message passing interface (MPI), which as a de facto standard appears in the code basis of many applications. To take advantage of the PGAS APIs like global address space programming interface (GASPI) without a major change in the code basis, interoperability between MPI and PGAS approaches needs to be ensured. In this article, we consider an interoperable GASPI/MPI implementation for the communication/performance crucial parts of the Ludwig and iPIC3D applications. To address the discovered performance limitations, we develop a novel strategy for significantly improved performance and interoperability between both APIs by leveraging GASPI shared windows and shared notifications. First results with a corresponding implementation in the MiniGhost proxy application and the Allreduce collective operation demonstrate the viability of this approach