415 research outputs found

    Will The Real Family-Friendly Employer Please Stand Up: Who Permits Parents To Reduce Working Hours For Purposes of Childcare?

    Get PDF
    Balancing work and family life can be a challenge, especially when a person needs to adjust her work schedule to deal with a family crisis. If the crisis involves a long term problem, such as caring for a sick or injured child that requires several months of care, the balancing act can require major shifts in the role an employee plays in a firm. This paper examines how an employer reacts to such a family-work issue: an employee who want to move from full-time to part-time in order to care for a young child. Most empirical work in this area deals with formal policies such as maternity leave, paternity leave, or leave beyond that required by the Family and Medical Leave Act and maps the type of formal policies a firm has into some "family-friendly" index. Switching from full-time to part-time is usually an informal process and it is not obvious how a firm ranking high on an index based of formal "family-friendly" policies would respond to such a request. Indeed, organizations with codified formal policies may be precisely the kinds of employers who do not permit such a shift from full-time to part-time. This is in fact what we find. Larger organizations are much more likely to provide formal policies such as paid maternity and paternity leave, while establishments that are not part of larger organizations are more likely to permit an employee to shift to part-time in order to care for a young child. These results suggests that family-friendly indexes that are based on formal policies may be unfairly labelling smaller firms "unfriendly" towards families simply because they use informal approaches to deal with family crises

    In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles

    Get PDF
    Uniaxial compression studies are performed on 50-µm-diameter bundles of nominally vertical, intertwined carbon nanotubes grown via chemical vapor deposition from a photolithographically defined catalyst. The inhomogeneous microstructure is examined, demonstrating density and tube orientation gradients, believed to play a role in the unique periodic buckling deformation mechanism. Through in situ uniaxial compression experiments it is discovered that the characteristic bottom-to-top sequential buckling proceeds by first nucleating on the bundle surface and subsequently propagating laterally through the bundle, gradually collapsing the entire structure. The effects of strain rate are explored, and storage and loss stiffnesses are analyzed in the context of energy dissipation

    Buckling-driven delamination of carbon nanotube forests

    Get PDF
    We report buckling-driven delamination of carbon nanotube (CNT) forests from their growth substrates when subjected to compression. Macroscale compression experiments reveal local delamination at the CNT forest-substrate interface. Results of microscale flat punch indentations indicate that enhanced CNT interlocking at the top surface of the forest accomplished by application of a metal coating causes delamination of the forest from the growth substrate, a phenomenon not observed in indentation of as-grown CNT forests. We postulate that the post-buckling tensile stresses that develop at the base of the CNT forests serve as the driving force for delamination

    A microstructurally motivated description of the deformation of vertically aligned carbon nanotube structures

    Get PDF
    Vertically aligned carbon nanotube’s extreme compliance and mechanical energy absorption/dissipation capabilities are potentially promising aspects of their multi-functionality. Mathematical models have revealed that a hardening-softening-hardening material relation can capture the unique sequential, periodic buckling behavior displayed by vertically aligned carbon nanotubes under uniaxial compression. Yet the physical origins of these models remain unknown. We provide a microstructure-based motivation for such a phenomenological constitutive relation and use it to explore changes in structural response with nanotube volume fraction

    Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide L-Ala-L-Pro-Gly·H2O Revealed by Adiabatic Calorimetry

    Get PDF
    We demonstrate application of precise adiabatic vacuum calorimetry to observation of phase transition in the tripeptide l-alanyl-l-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuum calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide.National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-003151)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-001960)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-002026

    Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia

    Get PDF
    Background and aims: Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L. Methods: We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 μg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 μg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method. Results: Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera. Conclusions: Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance
    • …
    corecore