119 research outputs found

    Partial “targeted” embolisation of brain arteriovenous malformations

    Get PDF
    The treatment of pial arteriovenous brain malformations is controversial. Little is yet known about their natural history, their pathomechanisms and the efficacy and risks of respective proposed treatments. It is known that only complete occlusion of the AVM can exclude future risk of haemorrhage and that the rates of curative embolisation of AVMs with an acceptable periprocedural risk are around 20 to 50%. As outlined in the present article, however, partial, targeted embolisation also plays a role. In acutely ruptured AVMs where the source of bleeding can be identified, targeted embolisation of this compartment may be able to secure the AVM prior to definitive treatment. In unruptured symptomatic AVMs targeted treatment may be employed if a defined pathomechanism can be identified that is related to the clinical symptoms and that can be cured with an acceptable risk via an endovascular approach depending on the individual AVM angioarchitecture. This review article gives examples of pathomechanisms and angioarchitectures that are amenable to this kind of treatment strategy

    Microsurgery can cure most intracranial dural arteriovenous fistulae of the sinus and non-sinus type

    Get PDF
    There is consensus that intracranial dural arteriovenous fistulae (dAVF) with direct (non-sinus-type) or indirect (sinus-type) retrograde filling of a leptomeningeal vein should be treated due to the high risk of neurological deficits and hemorrhage. No consensus exists on treatment modality (surgery and/or embolization) and, if surgery is performed, on the best surgical strategy. This series aims to evaluate the role of surgery in the management of aggressive dAVFs. Forty-two patients underwent surgery. Opening and packing the sinus with thrombogenic material was performed in 9 of the 12 sinus-type dAVFs. In two sinus-type fistulae of the cavernous sinus and 1 of the torcular, microsurgery was used as prerequisite for subsequent embolization by providing access to the sinus. In the 30 non-sinus-type dAVFs, surgery consisted of interruption of the draining vein at the intradural entry point. In 41 patients undergoing 43 operations, elimination of the dAVF was achieved (97.6%). In one case, a minimal venous drainage persisted after surgery. The transient surgical morbidity was 11.9% (n = 5) and the permanent surgical morbidity 7.1% (n = 3). Our surgical strategy was to focus on the arterialized leptomeningeal vein in the non-sinus-type and on the arterialized sinus segment in the sinus-type dAVFs allowing us to obliterate all but one dAVF with a low morbidity rate. We therefore propose that microsurgery should be considered early in the treatment of both types of aggressive dAVFs. In selected cases of cavernous sinus dAVFs, the role of microsurgery is reduced to that of an adjunct to endovascular therapy

    Analyse rotationnelle des systèmes A et B de la molécule CuBi

    Full text link
    L'analyse rotationnelle du spectre de la molécule CuBi, obtenu par excitation thermique, est délicate ; par suite du grand moment d'inertie de la molécule, seules les raies situées loin de la tête sont résolues. L'étude de la superposition de différentes branches isotopiques permet toutefois de déterminer exactement la valeur de J pour chacune de ces raies et d'en déduire une valeur très précise des constantes de rotation. L'observation de retournements du dégradé de certaines bandes nous permet de plus de calculer l'influence de l'interaction vibration-rotation dans le système A-X. Nous pouvons alors expliquer les anomalies du tableau de Deslandres construit à partir des têtes de bandes : elles sont dues à la variation de la différence de fréquence tête-origine. L'analyse d'un second système met en évidence un nouvel état (B) de la molécule

    Analyse rotationnelle des systèmes A et B de la molécule CuBi

    Full text link
    The rotational analysis of the spectra of the CuBi molecule, obtained by thermal excitation is not easy because only the parts of the bands far from the head are resolved, as a consequence of a high moment of inertia. However, the study of the overlapping of the various isotopic branches allows one to obtain the exact J-numbering of the lines and to give accurate values of the rotational constants. The influence of the vibration-rotation interaction in the A-X system is deduced from the observation of reversals of shading in certain bands. This leads to explain deviations observed in the Deslandres table built with wave numbers of heads as due to the variation of the difference of frequencies between heads and origins. Finally, we report the analysis of a second transition between a new state labelled B and the ground state.L'analyse rotationnelle du spectre de la molécule CuBi, obtenu par excitation thermique, est délicate ; par suite du grand moment d'inertie de la molécule, seules les raies situées loin de la tête sont résolues. L'étude de la superposition de différentes branches isotopiques permet toutefois de déterminer exactement la valeur de J pour chacune de ces raies et d'en déduire une valeur très précise des constantes de rotation. L'observation de retournements du dégradé de certaines bandes nous permet de plus de calculer l'influence de l'interaction vibration-rotation dans le système A-X. Nous pouvons alors expliquer les anomalies du tableau de Deslandres construit à partir des têtes de bandes : elles sont dues à la variation de la différence de fréquence tête-origine. L'analyse d'un second système met en évidence un nouvel état (B) de la molécule

    Utilisation de l'effet isotopique pour la détermination de la structure de rotation d'une bande incomplètement résolue (bande 0-0 du système visible de AuGa)

    Full text link
    In the electronic spectra of diatomic molécules with a high reduced mass, the rotational structure is generaly unresolved in the neighbourhood of the heads. The study of such band is all the more difficult as there exist different isotopes, even if studied far from the origin. In some cases however — for the molecule AuGa for instance — the observation of coïncidences between the lines of rotation of the two isotopes enables us to determine the real value of J which corresponds to these lines and then an extremely accurate value of the rotational constants. Moreover, in the case of that molecule, the centrifugal distorsion is sufficiently important to cause reversals of shading in a few bands of the sequence Δν = + 1. The numerical study of this phenomenon enables us to calculate the rotational constants for all the bands of the system.Dans les spectres électroniques des molécules diatomiques de masse réduite élevée, la structure de rotation est si serrée, qu'il n'est pas question de la résoudre au voisinage des têtes. L'existence d'isotopes différents rend l'étude de telles bandes plus difficile encore, même lorsqu'on s'éloigne beaucoup de l'origine. Cependant, dans certains cas, par exemple pour la molécule AuGa, l'observation des zones de coïncidences entre les raies de rotation des deux isotopes permet de déterminer la valeur exacte de J correspondant à ces raies, et par suite une valeur extrêmement précise des constantes de rotation. D'autre part, dans le cas particulier de cette molécule, la distorsion centrifuge est assez importante pour provoquer des rebroussements de dégradé dans quelques bandes de la séquence Δ ν = + 1. L'étude numérique de ce phénomène permet de calculer les constantes de rotation pour toutes les bandes du système

    Étude des bandes d'absorption infrarouges v0-3, v0-4, v0-5 de l'acide bromhydrique gazeux à l'aide d'un spectromètre SISAM

    Full text link
    The v0-3, v0-4 and v0-5 bands of H 79Br and H 81Br were studied with a SISAM spectrometer having a theoretical resolving power of 30 mK. The wave number measurements of the vibration-rotation lines in the v 0-3, v0-4 and v0-5 bands have been obtained with a precision of 20 mK, and have allowed the determination of the molecular vibrational and rotational constants of each isotopic molecule.Les bandes d'absorption v0-3, v0-4 et v0-5 des molécules isotopiques H 79Br et H 81Br ont été analysées avec un spectromètre SISAM dont la résolution théorique est de l'ordre de 30 mK. Les mesures des nombres d'ondes des raies, effectuées avec une précision de 20 mK, ont permis de préciser la valeur des constantes de vibration et de rotation de chacune des molécules isotopiques
    corecore