2,356 research outputs found

    Econometric Analysis of Structural Systems with Permanent and Transitory Shocks

    Get PDF
    This paper considers the implications of the permanent/transitory decomposition of shocks for identification of structural models in the general case where the model might contain more than one permanent structural shock. It provides a simple and intuitive generalization of the influential work of Blanchard and Quah (1989), and shows that structural equations with known permanent shocks can not contain error correction terms, thereby freeing up the latter to be used as instruments in estimating their parameters. The approach is illustrated by a re-examination of the identification schemes used by Wickens and Motto (2001), Shapiro and Watson (1988), King, Plosser, Stock, Watson (1991), Gali (1992, 1999) and Fisher (2006).Permanent shocks; structural identification; error correction models; IS-LM models

    Exciton-Polariton scattering for defect detection in cold atom Optical Lattices

    Full text link
    We study the effect of defects in the Mott insulator phase of ultracold atoms in an optical lattice on the dynamics of resonant excitations. Defects, which can either be empty sites in a Mott insulator state with one atom per site or a singly occupied site for a filling factor two, change the dynamics of Frenkel excitons and cavity polaritons. While the vacancies in first case behave like hard sphere scatters for excitons, singly occupied sites in the latter case can lead to attractive or repulsive scattering potentials. We suggest cavity polaritons as observation tool of such defects, and show how the scattering can be controlled in changing the exciton-photon detuning. In the case of asymmetric optical lattice sites we present how the scattering effective potential can be detuned by the cavity photon polarization direction, with the possibility of a crossover from a repulsive into an attractive potential.Comment: 9 pages, 10 figure

    Survey expectations

    Full text link
    This paper focuses on survey expectations and discusses their uses for testing and modeling of expectations. Alternative models of expectations formation are reviewed and the importance of allowing for heterogeneity of expectations is emphasized. A weak form of the rational expectations hypothesis which focuses on average expectations rather than individual expectations is advanced. Other models of expectations formation, such as the adaptive expectations hypothesis, are briefly discussed. Testable implications of rational and extrapolative models of expectations are reviewed and the importance of the loss function for the interpretation of the test results is discussed. The paper then provides an account of the various surveys of expectations, reviews alternative methods of quantifying the qualitative surveys, and discusses the use of aggregate and individual survey responses in the analysis of expectations and for forecasting

    Collective Light Emission of a Finite Size Atomic Chain

    Full text link
    Radiative properties of collective electronic states in a one dimensional atomic chain are investigated. Radiative corrections are included with emphasize put on the effect of the chain size through the dependence on both the number of atoms and the lattice constant. The damping rates of collective states are calculated in considering radiative effects for different values of the lattice constant relative to the atomic transition wave length. Especially the symmetric state damping rate as a function of the number of the atoms is derived. The emission pattern off a finite linear chain is also presented. The results can be adopted for any chain of active material, e.g., a chain of semiconductor quantum dots or organic molecules on a linear matrix.Comment: 10 pages, 20 figure
    corecore