4,787 research outputs found
DDFT calibration and investigation of an anisotropic phase-field crystal model
The anisotropic phase-field crystal model recently proposed and used by
Prieler et al. [J. Phys.: Condens. Matter 21, 464110 (2009)] is derived from
microscopic density functional theory for anisotropic particles with fixed
orientation. Further its morphology diagram is explored. In particular we
investigated the influence of anisotropy and undercooling on the process of
nucleation and microstructure formation from atomic to the microscale. To that
end numerical simulations were performed varying those dimensionless parameters
which represent anisotropy and undercooling in our anisotropic phase-field
crystal (APFC) model. The results from these numerical simulations are
summarized in terms of a morphology diagram of the stable state phase. These
stable phases are also investigated with respect to their kinetics and
characteristic morphological features.Comment: It contain 13 pages and total of 7 figure
Noise and dynamical pattern selection
In pattern forming systems such as Rayleigh-Benard convection or directional
solidification, a large number of linearly stable, patterned steady states
exist when the basic, simple steady state is unstable. Which of these steady
states will be realized in a given experiment appears to depend on unobservable
details of the system's initial conditions. We show, however, that weak,
Gaussian white noise drives such a system toward a preferred wave number which
depends only on the system parameters and is independent of initial conditions.
We give a prescription for calculating this wave number, analytically near the
onset of instability and numerically otherwise.Comment: 12 pages, REVTEX, no figures. Submitted to Phys. Rev. Let
An Engineering, Geological and Hydrological Environmental Assessment of a 250 MMSCFD Dry Ash Lurgi Coal Gasification Facility
A preliminary engineering, geological, and hydrological environmental assessment of a proposed 250 MMSCFD dry ash Lurgi coal gasification facility is discussed.
The facility\u27s emission spectrum is examined on the basis of the proposed design and empirical data. This system utilizes approximately 13 million tons of lignite and 17,000 acre feet of water per year and consumes 6500 tons of oxygen per day. The results of the study indicate that the major gaseous effluent is CO2, that the federal limits on SO2 effluent may be met, and that the atmospheric degradation criterion will be the most difficult one to meet.
The fate of trace elements during the gasification process is discussed. Available preliminary data indicate that the majority of the trace elements will be concentrated in and leave the system with the ash.
The probable hydrological and geological impacts pertinent to ash and sludge disposal and water table depression are discussed. The results of the study indicate that the water table will be depressed during mine operations and that some groundwater pollution will occur due to waste disposal
Dynamic scaling and quasi-ordered states in the two dimensional Swift-Hohenberg equation
The process of pattern formation in the two dimensional Swift-Hohenberg
equation is examined through numerical and analytic methods. Dynamic scaling
relationships are developed for the collective ordering of convective rolls in
the limit of infinite aspect ratio. The stationary solutions are shown to be
strongly influenced by the strength of noise. Stationary states for small and
large noise strengths appear to be quasi-ordered and disordered respectively.
The dynamics of ordering from an initially inhomogeneous state is very slow in
the former case and fast in the latter. Both numerical and analytic
calculations indicate that the slow dynamics can be characterized by a simple
scaling relationship, with a characteristic dynamic exponent of in the
intermediate time regime
Phase-field approach to heterogeneous nucleation
We consider the problem of heterogeneous nucleation and growth. The system is
described by a phase field model in which the temperature is included through
thermal noise. We show that this phase field approach is suitable to describe
homogeneous as well as heterogeneous nucleation starting from several general
hypotheses. Thus we can investigate the influence of grain boundaries,
localized impurities, or any general kind of imperfections in a systematic way.
We also put forward the applicability of our model to study other physical
situations such as island formation, amorphous crystallization, or
recrystallization.Comment: 8 pages including 7 figures. Accepted for publication in Physical
Review
Cumulative and Differential Effects of Early Child Care and Middle Childhood Out-of-School Time on Adolescent Functioning.
Effects associated with early child care and out-of-school time (OST) during middle childhood were examined in a large sample of U.S. adolescents (N = 958). Both higher quality early child care AND more epochs of organized activities (afterschool programs and extracurricular activities) during middle childhood were linked to higher academic achievement at age 15. Differential associations were found in the behavioral domain. Higher quality early child care was associated with fewer externalizing problems, whereas more hours of early child care was linked to greater impulsivity. More epochs of organized activities was associated with greater social confidence. Relations between early child care and adolescent outcomes were not mediated or moderated by OST arrangements in middle childhood, consistent with independent, additive relations of these nonfamilial settings
Ultra-short silicon-organic hybrid (SOH) modulator for bidirectional polarization-independent operation
We propose a bidirectional, polarization-independent, recirculating IQ-modulator scheme based on the silicon-organic hybrid (SOH) platform. We demonstrate the viability of the concept by using an SOH Mach-Zehnder modulator, operated at 10 GBd BPSK and 2ASK-2PSK
Microscopic theory of network glasses
A molecular theory of the glass transition of network forming liquids is
developed using a combination of self-consistent phonon and liquid state
approaches. Both the dynamical transition and the entropy crisis characteristic
of random first order transitions are mapped out as a function of the degree of
bonding and the density. Using a scaling relation for a soft-core model to
crudely translate the densities into temperatures, the theory predicts that the
ratio of the dynamical transition temperature to the laboratory transition
temperature rises as the degree of bonding increases, while the Kauzmann
temperature falls relative to the laboratory transition. These results indicate
why highly coordinated liquids should be "strong" while van der Waals liquids
without coordination are "fragile".Comment: slightly revised version that has been accepted for publication in
Phys. Rev. Let
Defining forgiveness: Christian clergy and general population perspectives.
The lack of any consensual definition of forgiveness is a serious weakness in the research literature (McCullough, Pargament & Thoresen, 2000). As forgiveness is at the core of Christianity, this study returns to the Christian source of the concept to explore the meaning of forgiveness for practicing Christian clergy. Comparisons are made with a general population sample and social science definitions of forgiveness to ensure that a shared meaning of forgiveness is articulated. Anglican and Roman Catholic clergy (N = 209) and a general population sample (N = 159) completed a postal questionnaire about forgiveness. There is agreement on the existence of individual differences in forgiveness. Clergy and the general population perceive reconciliation as necessary for forgiveness while there is no consensus within psychology. The clergy suggests that forgiveness is limitless and that repentance is unnecessary while the general population suggests that there are limits and that repentance is necessary. Psychological definitions do not conceptualize repentance as necessary for forgiveness and the question of limits has not been addressed although within therapy the implicit assumption is that forgiveness is limitless.</p
Properties of pattern formation and selection processes in nonequilibrium systems with external fluctuations
We extend the phase field crystal method for nonequilibrium patterning to
stochastic systems with external source where transient dynamics is essential.
It was shown that at short time scales the system manifests pattern selection
processes. These processes are studied by means of the structure function
dynamics analysis. Nonequilibrium pattern-forming transitions are analyzed by
means of numerical simulations.Comment: 15 poages, 8 figure
- …