22 research outputs found

    Trigger finger: etiology, evaluation, and treatment

    Get PDF
    Trigger finger is a common finger aliment, thought to be caused by inflammation and subsequent narrowing of the A1 pulley, which causes pain, clicking, catching, and loss of motion of the affected finger. Although it can occur in anyone, it is seen more frequently in the diabetic population and in women, typically in the fifth to sixth decade of life. The diagnosis is usually fairly straightforward, as most patients complain of clicking or locking of the finger, but other pathological processes such as fracture, tumor, or other traumatic soft tissue injuries must be excluded. Treatment modalities, including splinting, corticosteroid injection, or surgical release, are very effective and are tailored to the severity and duration of symptoms

    In Vitro Characterization of a Nuclear Receptor-like Domain of the Xylanase Regulator 1 from <i>Trichoderma reesei</i>

    No full text
    Engineering transcription factors is an interesting research target gaining increasing attention, such as in the case of industrially used organisms. With respect to sustainability, biomass-degrading saprophytic fungi, such as Trichoderma reesei, are promising industrial work horses because they exhibit a high secretory capacity of native and heterologously expressed enzymes and compounds. A single-point mutation in the main transactivator of xylanase and cellulase expressions in T. reesei Xyr1 led to a strongly deregulated and enhanced xylanase expression. Circular dichroism spectroscopy revealed a change in secondary structure caused by this mutation. According to electrophoretic mobility shift assays and determination of the equilibrium-binding constants, the DNA-binding affinity of the mutated Xyr1 was considerably reduced compared to the wild-type Xyr1. Both techniques were also used to investigate the allosteric response to carbohydrates (D-glucose-6-phosphate, D-xylose, and sophorose) signalling the repression or induction of Xyr1 target genes. The mutated Xyr1 no longer exhibited a conformational change in response to these carbohydrates, indicating that the observed deregulation is not a simple matter of a change in DNA-binding of the transactivator. Altogether, we postulate that the part of Xyr1 where the mutation is located functions as a nuclear receptor-like domain that mediates carbohydrate signals and modulates the Xyr1 transactivating activity

    Synthesis of an antiviral drug precursor from chitin using a saprophyte as a whole-cell catalyst

    No full text
    Abstract Background Recent incidents, such as the SARS and influenza epidemics, have highlighted the need for readily available antiviral drugs. One important precursor currently used for the production of Relenza, an antiviral product from GlaxoSmithKline, is N-acetylneuraminic acid (NeuNAc). This substance has a considerably high market price despite efforts to develop cost-reducing (biotechnological) production processes. Hypocrea jecorina (Trichoderma reesei) is a saprophyte noted for its abundant secretion of hydrolytic enzymes and its potential to degrade chitin to its monomer N-acetylglucosamine (GlcNAc). Chitin is considered the second most abundant biomass available on earth and therefore an attractive raw material. Results In this study, we introduced two enzymes from bacterial origin into Hypocrea, which convert GlcNAc into NeuNAc via N-acetylmannosamine. This enabled the fungus to produce NeuNAc from the cheap starting material chitin in liquid culture. Furthermore, we expressed the two recombinant enzymes as GST-fusion proteins and developed an enzyme assay for monitoring their enzymatic functionality. Finally, we demonstrated that Hypocrea does not metabolize NeuNAc and that no NeuNAc-uptake by the fungus occurs, which are important prerequisites for a potential production strategy. Conclusions This study is a proof of concept for the possibility to engineer in a filamentous fungus a bacterial enzyme cascade, which is fully functional. Furthermore, it provides the basis for the development of a process for NeuNAc production as well as a general prospective design for production processes that use saprophytes as whole-cell catalysts.</p
    corecore