1,239 research outputs found
Non-symmetric trapped surfaces in the Schwarzschild and Vaidya spacetimes
Marginally trapped surfaces (MTSs) are commonly used in numerical relativity
to locate black holes. For dynamical black holes, it is not known generally if
this procedure is sufficiently reliable. Even for Schwarzschild black holes,
Wald and Iyer constructed foliations which come arbitrarily close to the
singularity but do not contain any MTSs. In this paper, we review the Wald-Iyer
construction, discuss some implications for numerical relativity, and
generalize to the well known Vaidya spacetime describing spherically symmetric
collapse of null dust. In the Vaidya spacetime, we numerically locate
non-spherically symmetric trapped surfaces which extend outside the standard
spherically symmetric trapping horizon. This shows that MTSs are common in this
spacetime and that the event horizon is the most likely candidate for the
boundary of the trapped region.Comment: 4 pages, 3 figures; v2: minor modifications; v3: clarified
conclusion
DEVELOPMENT OF CASE STUDIES FOR THE NAVAL ACADEMY NE 203 ETHICS AND MORAL REASONING FOR NAVAL LEADERS COURSE
This thesis reviews the structure and teaching methods used in the United States Naval Academy’s NE 203 Ethics and Moral Reasoning for Naval Leaders course. We begin with a broad overview of the utility and effectiveness of the case method as a means of instructing undergraduate students in the field of ethics. We then focus on its current implementation in the Naval Academy’s NE 203 course, using interviews with senior faculty to understand the importance of the case method in teaching practical ethics. The culminating products created within this thesis are two ethical case studies, with associated teaching plans, designed for instruction by Naval Academy faculty in the NE 203 ethics course. The first case study narrates the story of Michael Izbicki, a 2008 Naval Academy graduate and designated submarine officer who petitioned for discharge as a conscientious objector upon considering the possibility that his military duty may include launching nuclear-armed weapons against American adversaries. The case study examines the moral tension that one experiences when facing a contradiction between the special obligation incurred by taking the military Oath of Office, and one’s deeply held religious views. The second case study is on when USS Mason was attacked in 2016.Lieutenant, United States NavyCaptain, United States Marine CorpsApproved for public release. Distribution is unlimited
Falloff of the Weyl scalars in binary black hole spacetimes
The peeling theorem of general relativity predicts that the Weyl curvature
scalars Psi_n (n=0...4), when constructed from a suitable null tetrad in an
asymptotically flat spacetime, fall off asymptotically as r^(n-5) along
outgoing radial null geodesics. This leads to the interpretation of Psi_4 as
outgoing gravitational radiation at large distances from the source. We have
performed numerical simulations in full general relativity of a binary black
hole inspiral and merger, and have computed the Weyl scalars in the standard
tetrad used in numerical relativity. In contrast with previous results, we
observe that all the Weyl scalars fall off according to the predictions of the
theorem.Comment: 7 pages, 3 figures, published versio
High efficiency thermionic converter studies
Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion
Effects of material properties and object orientation on precision grip kinematics.
Successfully picking up and handling objects requires taking into account their physical properties (e.g., material) and position relative to the body. Such features are often inferred by sight, but it remains unclear to what extent observers vary their actions depending on the perceived properties. To investigate this, we asked participants to grasp, lift and carry cylinders to a goal location with a precision grip. The cylinders were made of four different materials (Styrofoam, wood, brass and an additional brass cylinder covered with Vaseline) and were presented at six different orientations with respect to the participant (0°, 30°, 60°, 90°, 120°, 150°). Analysis of their grasping kinematics revealed differences in timing and spatial modulation at all stages of the movement that depended on both material and orientation. Object orientation affected the spatial configuration of index finger and thumb during the grasp, but also the timing of handling and transport duration. Material affected the choice of local grasp points and the duration of the movement from the first visual input until release of the object. We find that conditions that make grasping more difficult (orientation with the base pointing toward the participant, high weight and low surface friction) lead to longer durations of individual movement segments and a more careful placement of the fingers on the object
Introduction to dynamical horizons in numerical relativity
This paper presents a quasi-local method of studying the physics of dynamical
black holes in numerical simulations. This is done within the dynamical horizon
framework, which extends the earlier work on isolated horizons to
time-dependent situations. In particular: (i) We locate various kinds of
marginal surfaces and study their time evolution. An important ingredient is
the calculation of the signature of the horizon, which can be either spacelike,
timelike, or null. (ii) We generalize the calculation of the black hole mass
and angular momentum, which were previously defined for axisymmetric isolated
horizons to dynamical situations. (iii) We calculate the source multipole
moments of the black hole which can be used to verify that the black hole
settles down to a Kerr solution. (iv) We also study the fluxes of energy
crossing the horizon, which describes how a black hole grows as it accretes
matter and/or radiation.
We describe our numerical implementation of these concepts and apply them to
three specific test cases, namely, the axisymmetric head-on collision of two
black holes, the axisymmetric collapse of a neutron star, and a
non-axisymmetric black hole collision with non-zero initial orbital angular
momentum.Comment: 20 pages, 16 figures, revtex4. Several smaller changes, some didactic
content shortene
Flight initiation distance as a behavioral indicator of hunting pressure: a case study of the Sooty-headed Bulbul (Pycnonotus aurigaster) in Xishuangbanna, SW China
Traditional assessments of anthropogenic impacts on biodiversity often ignore hunting pressure or use subjective categories (e.g. high, medium or low) that cannot be readily understood by readers or replicated in other studies. Although animals often appear tame in habitats without hunting compared to habitats with hunting, few studies have demonstrated such effects. We determined the flight initiation distance (FID; i.e. human-animal distance when the animal begins to flee) of a common frugivorous bird of Southeast Asia, Sooty-headed Bulbul (Pycnonotus aurigaster) across a gradient of hunting pressures in Xishuangbanna, Yunnan, SW China. Controlling for confounding effects, we show that FID increased with hunting pressure, which was quantitatively measured through encounters with hunters. As FIDs respond more specifically to hunting than other defaunation metrics, we suggest they can be used as behavioral indicators of hunting pressure in developing conservation strategies.Rachakonda Sreekar, Eben Goodale and Rhett D. Harriso
Multi-patch methods in general relativistic astrophysics - I. Hydrodynamical flows on fixed backgrounds
Many systems of interest in general relativistic astrophysics, including
neutron stars, accreting compact objects in X-ray binaries and active galactic
nuclei, core collapse, and collapsars, are assumed to be approximately
spherically symmetric or axisymmetric. In Newtonian or fixed-background
relativistic approximations it is common practice to use spherical polar
coordinates for computational grids; however, these coordinates have
singularities and are difficult to use in fully relativistic models. We
present, in this series of papers, a numerical technique which is able to use
effectively spherical grids by employing multiple patches. We provide detailed
instructions on how to implement such a scheme, and present a number of code
tests for the fixed background case, including an accretion torus around a
black hole.Comment: 26 pages, 20 figures. A high-resolution version is available at
http://www.cct.lsu.edu/~bzink/papers/multipatch_1.pd
Numerical relativity with characteristic evolution, using six angular patches
The characteristic approach to numerical relativity is a useful tool in
evolving gravitational systems. In the past this has been implemented using two
patches of stereographic angular coordinates. In other applications, a
six-patch angular coordinate system has proved effective. Here we investigate
the use of a six-patch system in characteristic numerical relativity, by
comparing an existing two-patch implementation (using second-order finite
differencing throughout) with a new six-patch implementation (using either
second- or fourth-order finite differencing for the angular derivatives). We
compare these different codes by monitoring the Einstein constraint equations,
numerically evaluated independently from the evolution. We find that, compared
to the (second-order) two-patch code at equivalent resolutions, the errors of
the second-order six-patch code are smaller by a factor of about 2, and the
errors of the fourth-order six-patch code are smaller by a factor of nearly 50.Comment: 12 pages, 5 figures, submitted to CQG (special NFNR issue
- …