513 research outputs found

    The distribution of wealth in the presence of altruism for simple economic models

    Full text link
    We study the effect of altruism in two simple asset exchange models: the yard sale model (winner gets a random fraction of the poorer player's wealth) and the theft and fraud model (winner gets a random fraction of the loser's wealth). We also introduce in these models the concept of bargaining efficiency, which makes the poorer trader more aggressive in getting a favorable deal thus augmenting his winning probabilities. The altruistic behavior is controlled by varying the number of traders that behave altruistically and by the degree of altruism that they show. The resulting wealth distribution is characterized using the Gini index. We compare the resulting values of the Gini index at different levels of altruism in both models. It is found that altruistic behavior does lead to a more equitable wealth distribution but only for unreasonable high values of altruism that are difficult to expect in a real economic system.Comment: Accepted in Physica A: Statistical Mechanics and its Application

    RefProtDom: a protein database with improved domain boundaries and homology relationships

    Get PDF
    Summary: RefProtDom provides a set of divergent query domains, originally selected from Pfam, and full-length proteins containing their homologous domains, with diverse architectures, for evaluating pair-wise and iterative sequence similarity searches. Pfam homology and domain boundary annotations in the target library were supplemented using local and semi-global searches, PSI-BLAST searches, and SCOP and CATH classifications

    Predicted and Verified Deviations from Zipf's law in Ecology of Competing Products

    Full text link
    Zipf's power-law distribution is a generic empirical statistical regularity found in many complex systems. However, rather than universality with a single power-law exponent (equal to 1 for Zipf's law), there are many reported deviations that remain unexplained. A recently developed theory finds that the interplay between (i) one of the most universal ingredients, namely stochastic proportional growth, and (ii) birth and death processes, leads to a generic power-law distribution with an exponent that depends on the characteristics of each ingredient. Here, we report the first complete empirical test of the theory and its application, based on the empirical analysis of the dynamics of market shares in the product market. We estimate directly the average growth rate of market shares and its standard deviation, the birth rates and the "death" (hazard) rate of products. We find that temporal variations and product differences of the observed power-law exponents can be fully captured by the theory with no adjustable parameters. Our results can be generalized to many systems for which the statistical properties revealed by power law exponents are directly linked to the underlying generating mechanism

    Power-law distributions from additive preferential redistributions

    Full text link
    We introduce a non-growth model that generates the power-law distribution with the Zipf exponent. There are N elements, each of which is characterized by a quantity, and at each time step these quantities are redistributed through binary random interactions with a simple additive preferential rule, while the sum of quantities is conserved. The situation described by this model is similar to those of closed NN-particle systems when conservative two-body collisions are only allowed. We obtain stationary distributions of these quantities both analytically and numerically while varying parameters of the model, and find that the model exhibits the scaling behavior for some parameter ranges. Unlike well-known growth models, this alternative mechanism generates the power-law distribution when the growth is not expected and the dynamics of the system is based on interactions between elements. This model can be applied to some examples such as personal wealths, city sizes, and the generation of scale-free networks when only rewiring is allowed.Comment: 12 pages, 4 figures; Changed some expressions and notations; Added more explanations and changed the order of presentation in Sec.III while results are the sam

    AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system

    Get PDF
    We have implemented a genome annotation system for prokaryotes called AGMIAL. Our approach embodies a number of key principles. First, expert manual annotators are seen as a critical component of the overall system; user interfaces were cyclically refined to satisfy their needs. Second, the overall process should be orchestrated in terms of a global annotation strategy; this facilitates coordination between a team of annotators and automatic data analysis. Third, the annotation strategy should allow progressive and incremental annotation from a time when only a few draft contigs are available, to when a final finished assembly is produced. The overall architecture employed is modular and extensible, being based on the W3 standard Web services framework. Specialized modules interact with two independent core modules that are used to annotate, respectively, genomic and protein sequences. AGMIAL is currently being used by several INRA laboratories to analyze genomes of bacteria relevant to the food-processing industry, and is distributed under an open source license

    Heterogeneity shapes groups growth in social online communities

    Get PDF
    Many complex systems are characterized by broad distributions capturing, for example, the size of firms, the population of cities or the degree distribution of complex networks. Typically this feature is explained by means of a preferential growth mechanism. Although heterogeneity is expected to play a role in the evolution it is usually not considered in the modeling probably due to a lack of empirical evidence on how it is distributed. We characterize the intrinsic heterogeneity of groups in an online community and then show that together with a simple linear growth and an inhomogeneous birth rate it explains the broad distribution of group members.Comment: 5 pages, 3 figure panel

    Gibrat's law for cities: uniformly most powerful unbiased test of the Pareto against the lognormal

    Full text link
    We address the general problem of testing a power law distribution versus a log-normal distribution in statistical data. This general problem is illustrated on the distribution of the 2000 US census of city sizes. We provide definitive results to close the debate between Eeckhout (2004, 2009) and Levy (2009) on the validity of Zipf's law, which is the special Pareto law with tail exponent 1, to describe the tail of the distribution of U.S. city sizes. Because the origin of the disagreement between Eeckhout and Levy stems from the limited power of their tests, we perform the {\em uniformly most powerful unbiased test} for the null hypothesis of the Pareto distribution against the lognormal. The pp-value and Hill's estimator as a function of city size lower threshold confirm indubitably that the size distribution of the 1000 largest cities or so, which include more than half of the total U.S. population, is Pareto, but we rule out that the tail exponent, estimated to be 1.4±0.11.4 \pm 0.1, is equal to 1. For larger ranks, the pp-value becomes very small and Hill's estimator decays systematically with decreasing ranks, qualifying the lognormal distribution as the better model for the set of smaller cities. These two results reconcile the opposite views of Eeckhout (2004, 2009) and Levy (2009). We explain how Gibrat's law of proportional growth underpins both the Pareto and lognormal distributions and stress the key ingredient at the origin of their difference in standard stochastic growth models of cities \cite{Gabaix99,Eeckhout2004}.Comment: 7 pages + 2 figure

    Diffusion, peer pressure and tailed distributions

    Full text link
    We present a general, physically motivated non-linear and non-local advection equation in which the diffusion of interacting random walkers competes with a local drift arising from a kind of peer pressure. We show, using a mapping to an integrable dynamical system, that on varying a parameter, the steady state behaviour undergoes a transition from the standard diffusive behavior to a localized stationary state characterized by a tailed distribution. Finally, we show that recent empirical laws on economic growth can be explained as a collective phenomenon due to peer pressure interaction.Comment: RevTex: 4 pages + 3 eps-figures. Minor Revision and figure 3 replaced. To appear in Phys. Rev. Letter

    Historical urban growth in Europe (1300–1800)

    Get PDF
    This paper analyses the evolution of the European urban system from a long-term perspective (from 1300 to 1800). Using the method recently proposed by Clauset, Shalizi, and Newman, a Pareto-type city size distribution (power law) is rejected from 1300 to 1600. A power law is a plausible model for the city size distribution only in 1700 and 1800, although the log-normal distribution is another plausible alternative model that we cannot reject. Moreover, the random growth of cities is rejected using parametric and non-parametric methods. The results reveal a clear pattern of convergent growth in all the periods

    Emergence of skew distributions in controlled growth processes

    Full text link
    Starting from a master equation, we derive the evolution equation for the size distribution of elements in an evolving system, where each element can grow, divide into two, and produce new elements. We then probe general solutions of the evolution quation, to obtain such skew distributions as power-law, log-normal, and Weibull distributions, depending on the growth or division and production. Specifically, repeated production of elements of uniform size leads to power-law distributions, whereas production of elements with the size distributed according to the current distribution as well as no production of new elements results in log-normal distributions. Finally, division into two, or binary fission, bears Weibull distributions. Numerical simulations are also carried out, confirming the validity of the obtained solutions.Comment: 9 pages, 3 figure
    corecore