327 research outputs found
On the Exchange of Kinetic and Magnetic Energy Between Clouds and the Interstellar Medium
We investigate, through 2D MHD numerical simulations, the interaction of a
uniform magnetic field oblique to a moving interstellar cloud. In particular we
explore the transformation of cloud kinetic energy into magnetic energy as a
result of field line stretching. Some previous simulations have emphasized the
possible dynamical importance of a ``magnetic shield'' formed around clouds
when the magnetic field is perpendicular to the cloud motion (Jones et al.
1996, Miniati et al. 1998). It was not clear, however, how dependent those
findings were to the assumed field configuration and cloud properties. To
expand our understanding of this effect, we examine several new cases by varing
the magnetic field orientation angle with respect to the cloud motion (\theta),
the cloud-background density contrast, and the cloud Mach number.
We show that in 2D and with \theta large enough, the magnetic field tension
can become dominant in the dynamics of the motion of high density contrast, low
Mach number clouds. In such cases a significant fraction of cloud kinetic
energy can be transformed into magnetic energy with the magnetic pressure at
the cloud nose exceeding the ram pressure of the impinging flow. We derive a
characteristic timescale for this process of energy ``conversion''. We find
also that unless the cloud motion is highly aligned to the magnetic field,
reconnection through tearing mode instabilities in the cloud wake limit the
formation of a strong flux rope feature following the cloud. Finally we attempt
to interpret some observational properties of the magnetic field in view of our
results.Comment: 24 pages in aaspp4 Latex and 7 figures. Accepted for publication in
The Astrophysical Journa
Is it Round? Spectropolarimetry of the Type II-P Supernova 1999em
We present the first multi-epoch spectropolarimetry of a type II plateau
supernova (SN II-P), with optical observations of SN 1999em on days 7, 40, 49,
159, and 163 after discovery. These data are used to probe the geometry of the
electron-scattering atmosphere before, during, and after the plateau phase,
which ended roughly 90 days after discovery. Weak continuum polarization with
an unchanging polarization angle (theta ~ 160 deg) is detected at all epochs,
with p ~ 0.2% on day 7, p ~ 0.3% on days 40 and 49, and p ~ 0.5% in the final
observations. Distinct polarization modulations across strong line features are
present on days 40, 49, 159, and 163. Uncorrected for interstellar polarization
(which is believed to be quite small), polarization peaks are associated with
strong P Cygni absorption troughs and nearly complete depolarization is seen
across the H-alpha emission profile. The temporal evolution of the continuum
polarization and sharp changes across lines indicate polarization intrinsic to
SN 1999em. When modeled in terms of the oblate, electron-scattering atmospheres
of Hoeflich, the observed polarization implies anasphericity of at least 7%
during the period studied. The temporal polarization increase may indicate
greater asphericity deeper into the ejecta. We discuss the implications of
asphericity on the use of type II-P supernovae as primary extragalactic
distance indicators through the expanding photosphere method (EPM). If
asphericity produces directionally dependant flux and peculiar galaxy motions
are characterized by sigma_v_rec = 300 km/s, it is shown that the agreement
between previous EPM measurements of SNe II and distances to the host galaxies
predicted by a linear Hubble law restrict mean SN II asphericity to values less
than 30% (3-sigma) during the photospheric phase.Comment: 65 pages (29 Figures, 4 Tables), Accepted for publication in the June
1, 2001 edition of ApJ. Revised statistical analysis of scatter in Hubble
diagram of previous EPM distances and the implications for mean SN II
asphericit
Five supernova survey galaxies in the southern hemisphere. I. Optical and near-infrared database
The determination of the supernova (SN) rate is based not only on the number
of detected events, but also on the properties of the parent galaxy population.
This is the first paper of a series aimed at obtaining new, refined, SN rates
from a set of five SN surveys, by making use of a joint analysis of
near-infrared (NIR) data. We describe the properties of the 3838 galaxies that
were monitored for SNe events, including newly determined morphologies and
their DENIS and POSS-II/UKST I, 2MASS and DENIS J and Ks and 2MASS H
magnitudes. We have compared 2MASS, DENIS and POSS-II/UKST IJK magnitudes in
order to find possible systematic photometric shifts in the measurements. The
DENIS and POSS-II/UKST I band magnitudes show large discrepancies (mean
absolute difference of 0.4 mag), mostly due to different spectral responses of
the two instruments, with an important contribution (0.33 mag rms) from the
large uncertainties in the photometric calibration of the POSS-II and UKST
photographic plates. In the other wavebands, the limiting near infrared
magnitude, morphology and inclination of the galaxies are the most influential
factors which affect the determination of photometry of the galaxies.
Nevertheless, no significant systematic differences have been found between of
any pair of NIR magnitude measurements, except for a few percent of galaxies
showing large discrepancies. This allows us to combine DENIS and 2MASS data for
the J and Ks filters.Comment: 17 pages, 3 figures, 5 tables, published in Astrophysics, Vol. 52,
No. 1, 2009 (English translation of Astrofizika
An Extragalactic HI Cloud with No Optical Counterpart?
We report the discovery, from the HI Parkes All-Sky Survey (HIPASS), of an
isolated cloud of neutral hydrogen which we believe to be extragalactic. The HI
mass of the cloud (HIPASS J1712-64) is very low, 1.7 x 10^7 Msun, using an
estimated distance of ~3.2 Mpc. Most significantly, we have found no optical
companion to this object to very faint limits (mu(B)~ 27 mag arcsec^-2). HIPASS
J1712-64 appears to be a binary system similar to, but much less massive than,
HI 1225+01 (the Virgo HI Cloud) and has a size of at least 15 kpc. The mean
velocity dispersion, measured with the Australia Telescope Compact Array
(ATCA), is only 4 km/s for the main component and because of the weak or
non-existent star-formation, possibly reflects the thermal linewidth (T<2000 K)
rather than bulk motion or turbulence. The peak column density for HIPASS
J1712-64, from the combined Parkes and ATCA data, is only 3.5 x 10^19 cm^-2,
which is estimated to be a factor of two below the critical threshold for star
formation. Apart from its significantly higher velocity, the properties of
HIPASS J1712-64 are similar to the recently recognised class of Compact High
Velocity Clouds. We therefore consider the evidence for a Local Group or
Galactic origin, although a more plausible alternative is that HIPASS J1712-64
was ejected from the interacting Magellanic Cloud/Galaxy system at
perigalacticon ~ 2 x 10^8 yr ago.Comment: 23 pages, 7 figures, AJ accepte
Milestones in the Observations of Cosmic Magnetic Fields
Magnetic fields are observed everywhere in the universe. In this review, we
concentrate on the observational aspects of the magnetic fields of Galactic and
extragalactic objects. Readers can follow the milestones in the observations of
cosmic magnetic fields obtained from the most important tracers of magnetic
fields, namely, the star-light polarization, the Zeeman effect, the rotation
measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio
polarization observations, as well as the newly implemented sub-mm and mm
polarization capabilities.
(Another long paragraph is omitted due to the limited space here)Comment: Invited Review (ChJA&A); 32 pages. Sorry if your significant
contributions in this area were not mentioned. Published pdf & ps files (with
high quality figures) now availble at http://www.chjaa.org/2002_2_4.ht
Evidence for Asphericity in the Type IIn Supernova 1998S
We present optical spectropolarimetry obtained at the Keck-II 10-m telescope
on 1998 March 7 UT along with total flux spectra spanning the first 494 days
after discovery (1998 March 2 UT) of the peculiar type IIn supernova (SN)
1998S. The SN is found to exhibit a high degree of linear polarization,
implying significant asphericity for its continuum-scattering environment.
Prior to removal of the interstellar polarization, the polarization spectrum is
characterized by a flat continuum (at p ~ 2%) with distinct changes in
polarization associated with both the broad (FWZI >= 20,000 km/s) and narrow
(unresolved, FWHM < 300 km/s) line emission seen in the total flux spectrum.
When analyzed in terms of a polarized continuum with unpolarized broad-line
recombination emission, an intrinsic continuum polarization of p ~ 3% results
(the highest yet found for a SN), suggesting a global asphericity of >= 45%
from the oblate, electron-scattering dominated models of Hoflich (1991). The
smooth, blue continuum evident at early times is shown to be inconsistent with
a reddened, single-temperature blackbody, instead having a color temperature
that increases with decreasing wavelength. Broad emission-line profiles with
distinct blue and red peaks are seen in the total flux spectra at later times,
perhaps suggesting a disk-like or ring-like morphology for the dense (n_e ~
10^7 cm^{-3}) circumstellar medium. Implications of the circumstellar
scattering environment for the spectropolarimetry are discussed, as are the
effects of uncertain removal of interstellar polarization.Comment: 25 pages + 2 tables + 14 figures, Submitted to The Astrophysical
Journa
Density profiles of dark matter haloes: diversity and dependence on environment
(Abridged) We study the outer density profiles of dark matter haloes
predicted by a generalized secondary infall model and observed in a N-body
cosmological simulation of a \Lambda CDM model. We find substantial systematic
variations in shapes and concentrations of the halo profiles as well as a
strong correlation of the profiles with the environment. In the N-body
simulation, the average outer slope of the density profiles, \beta (\rho\propto
r^{-\beta}), of isolated haloes is \approx 2.9; 68% of these haloes have values
of \beta between 2.5 and 3.8. Haloes in dense environments of clusters are more
concentrated and exhibit a broad distribution of \beta with values larger than
for isolated haloes . Contrary to what one may expect, the haloes contained
within groups and galaxy systems are less concentrated and have flatter outer
density profiles than the isolated haloes. The concentration decreases with
M_h, but its scatter for a given mass is substantial. The mass and circular
velocity of the haloes are strongly correlated: M_h \propto V_m^{\alpha} with
\alpha ~ 3.3 (isolated) and ~3.5 (haloes in clusters). For M_h=10^12M_sun the
rms deviations from these relations are \Delta logM_h=0.12 and 0.18,
respectively. Approximately 30% of the haloes are contained within larger
haloes or have massive companions (larger than ~0.3 the mass of the current
halo) within 3 virial radii. The remaining 70% of the haloes are isolated
objects. The distribution of \beta as well as the concentration-mass and
M_h-V_m relations for the isolated haloes agree very well with the predictions
of our seminumerical approach which is based on a generalization of the
secondary infall model and on the extended Press-Schechter formalism.Comment: 14 pages, 11 figures included, uses mn.sty, accepted by MNRAS. Minor
modifications, new and updated reference
Proposing new variables for the identification of strategic groups in franchising
The identification of strategic groups in the Spanish franchising area is the
main aim of this study. The authors have added some new strategic variables (not
used before) to the study and have classified franchisors between sectors and
distribution strategy. The results reveal the existence of four perfectly differentiated
strategic groups (types of franchisors). One of the major implications of this study is
that the variables that build a strategic group vary depending on the respective sector the network operates in and its distribution strategy. This fact indicates that including sector and distribution strategy is absolutely necessary to achieve good classifications of franchisor type
Gravitational stability and dynamical overheating of stellar disks of galaxies
We use the marginal stability condition for galactic disks and the stellar
velocity dispersion data published by different authors to place upper limits
on the disk local surface density at two radial scalelengths .
Extrapolating these estimates, we constrain the total mass of the disks and
compare these estimates to those based on the photometry and color of stellar
populations. The comparison reveals that the stellar disks of most of spiral
galaxies in our sample cannot be substantially overheated and are therefore
unlikely to have experienced a significant merging event in their history. The
same conclusion applies to some, but not all of the S0 galaxies we consider.
However, a substantial part of the early type galaxies do show the stellar
velocity dispersion well in excess of the gravitational stability threshold
suggesting a major merger event in the past. We find dynamically overheated
disks among both seemingly isolated galaxies and those forming pairs. The ratio
of the marginal stability disk mass estimate to the total galaxy mass within
four radial scalelengths remains within a range of 0.4---0.8. We see no
evidence for a noticeable running of this ratio with either the morphological
type or color index.Comment: 25 pages, 5 figures, accepted to Astronomy Letter
Ergs: The Evolution of Shell Supernova Remnants
This paper reports on a workshop hosted by the University of Minnesota, March
23-26, 1997. It addressed fundamental dynamical issues associated with the
evolution of shell supernova remnants and the relationships between supernova
remnants and their environments. The workshop considered, in addition to
classical shell SNRs, dynamical issues involving X-ray filled composite
remnants and pulsar driven shells, such as that in the Crab Nebula.
Approximately 75 participants with wide ranging interests attended the
workshop. An even larger community helped through extensive on-line debates
prior to the meeting. Each of the several sessions, organized mostly around
chronological labels, also addressed some underlying, general physical themes:
How are SNR dynamics and structures modified by the character of the CSM and
the ISM and vice versa? How are magnetic fields generated in SNRs and how do
magnetic fields influence SNRs? Where and how are cosmic-rays (electrons and
ions) produced in SNRs and how does their presence influence or reveal SNR
dynamics? How does SNR blast energy partition into various components over time
and what controls conversion between components? In lieu of a proceedings
volume, we present here a synopsis of the workshop in the form of brief
summaries of the workshop sessions. The sharpest impressions from the workshop
were the crucial and under-appreciated roles that environments have on SNR
appearance and dynamics and the critical need for broad-based studies to
understand these beautiful, but enigmatic objects. \\Comment: 54 pages text, no figures, Latex (aasms4.sty). submitted to the PAS
- âŠ