562 research outputs found
Pattern Stability and Trijunction Motion in Eutectic Solidification
We demonstrate by both experiments and phase-field simulations that lamellar
eutectic growth can be stable for a wide range of spacings below the point of
minimum undercooling at low velocity, contrary to what is predicted by existing
stability analyses. This overstabilization can be explained by relaxing Cahn's
assumption that lamellae grow locally normal to the eutectic interface.Comment: 4 pages, 5 eps figure
Resource dedication problem in a multi-project environment
There can be different approaches to the management of resources within
the context of multi-project scheduling problems. In general, approaches to multiproject scheduling problems consider the resources as a pool shared by all projects. On the other hand, when projects are distributed geographically or sharing resources between projects is not preferred, then this resource sharing policy may not be feasible. In such cases, the resources must be dedicated to individual projects throughout the project durations. This multi-project problem environment is defined here as the resource dedication problem (RDP). RDP is defined as the optimal dedication of resource capacities to different projects within the overall limits of the resources and with the objective of minimizing a predetermined objective function. The projects involved are multi-mode resource constrained project scheduling problems with finish to start zero time lag and non-preemptive activities and limited renewable and nonrenewable resources. Here, the characterization of RDP, its mathematical formulation and two different solution methodologies are presented. The first solution approach is a genetic algorithm employing a new improvement move called combinatorial auction for RDP, which is based on preferences of projects for resources. Two different methods for calculating the projects’ preferences based on linear and Lagrangian relaxation are proposed. The second solution approach is a Lagrangian relaxation based heuristic employing subgradient optimization. Numerical studies demonstrate that the proposed approaches are powerful methods for solving this problem
Seismic stratigraphy and sediment cores reveal lake-level fluctuations in Lake Iznik (NW Turkey) over the past ∼70 ka
Our study aims to understand the palaeohydrological history of Lake Iznik and unravel the complex interplay between climatic, tectonic, and environmental factors that have shaped this Turkish basin. Through the analysis of seismic stratigraphy and sediment cores, we reveal a significant lowstand, indicating a lake level 60 m lower than today at ∼70 ka BP. Subsequently, a major phase of stepwise transgression is evidenced by 13 buried palaeoshorelines between ∼70 and 45 ka BP. From 45 to ∼10 ka cal BP, strong currents controlled the sedimentation in the lake, as evidenced by the occurrence of contourite drifts. Between ∼14 and 10 ka cal. BP, a major lowstand indicating a drier climate interrupted the current-controlled sedimentation regime. From ∼10 ka cal. BP, the subsequent increase in lake level occurred at the same time as the reconnection between the Mediterranean and Black seas. Archaeological evidence, including submerged structures of a basilica, establishes a link between lake-level changes and human settlement during the last millennium. The level of Lake Iznik has since continued to fluctuate due to climate change, tectonic events, and human activity
Lateral variations in the signature of earthquake‐generated deposits in Lake Iznik, NW Turkey
Using lake-sediment cores to document past seismicity requires a comprehen- sive understanding of possible lateral variations in depositional processes. This study aims to reveal the lateral variations in earthquake-induced event deposits throughout Lake Iznik, a large lake located on the middle strand of the North Anatolian Fault. Based on stratigraphic, sedimentological and geochemical anal- yses of 14 sediment cores from two subbasins across the lake, five different types of event deposits (T1–T5) were identified and characterised. One event deposit type (T5) is restricted to a delta mouth, characterised by the occurrence of au- thigenic Fe-Mn carbonates and interpreted to result from flood events. The four other types of event deposits are characterised by their synchronicity between cores and their age consistency with historical earthquakes and are interpreted to be likely generated by earthquakes. The locally prominent 1065 CE historical earthquake that ruptured the sub-lacustrine Iznik Fault produced at least three different types of event deposits. One deposit type (T2) is only observed for this very local earthquake, implying that the type of event deposit might also depend on ground-motion parameters. At the lake scale, the occurrence of various event deposits depends on the flow distance from the source of sediment destabilisa- tions to the coring site
Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data
Many Galactic sources of gamma rays, such as supernova remnants, are expected
to produce neutrinos with a typical energy cutoff well below 100 TeV. For the
IceCube Neutrino Observatory located at the South Pole, the southern sky,
containing the inner part of the Galactic plane and the Galactic Center, is a
particularly challenging region at these energies, because of the large
background of atmospheric muons. In this paper, we present recent advancements
in data selection strategies for track-like muon neutrino events with energies
below 100 TeV from the southern sky. The strategies utilize the outer detector
regions as veto and features of the signal pattern to reduce the background of
atmospheric muons to a level which, for the first time, allows IceCube
searching for point-like sources of neutrinos in the southern sky at energies
between 100 GeV and several TeV in the muon neutrino charged current channel.
No significant clustering of neutrinos above background expectation was
observed in four years of data recorded with the completed IceCube detector.
Upper limits on the neutrino flux for a number of spectral hypotheses are
reported for a list of astrophysical objects in the southern hemisphere.Comment: 19 pages, 17 figures, 2 table
Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1
In order to identify the sources of the observed diffuse high-energy neutrino
flux, it is crucial to discover their electromagnetic counterparts. IceCube
began releasing alerts for single high-energy ( TeV) neutrino
detections with sky localisation regions of order 1 deg radius in 2016. We used
Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for
any optical transients that may be related to the neutrinos. Typically 10-20
faint ( mag) extragalactic transients are found within the
Pan-STARRS1 footprints and are generally consistent with being unrelated field
supernovae (SNe) and AGN. We looked for unusual properties of the detected
transients, such as temporal coincidence of explosion epoch with the IceCube
timestamp. We found only one transient that had properties worthy of a specific
follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of
astrophysical origin of 50 %), we found a SN PS16cgx, located at 10.0'
from the nominal IceCube direction. Spectroscopic observations of PS16cgx
showed that it was an H-poor SN at z = 0.2895. The spectra and light curve
resemble some high-energy Type Ic SNe, raising the possibility of a jet driven
SN with an explosion epoch temporally coincident with the neutrino detection.
However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously
difficult. Based on all available data we conclude that the transient is more
likely to be a Type Ia with relatively weak SiII absorption and a fairly normal
rest-frame r-band light curve. If, as predicted, there is no high-energy
neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence,
and unrelated to the IceCube-160427A. We find no other plausible optical
transient for any of the five IceCube events observed down to a 5
limiting magnitude of mag, between 1 day and 25 days after
detection.Comment: 20 pages, 6 figures, accepted to A&
Recommended from our members
Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data
Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere
- …