35 research outputs found

    Tamsulosin-induced severe hypotension during general anesthesia: a case report.

    Get PDF
    Introduction: Tamsulosin, a selective alpha1-adrenergic receptor (alpha1-AR) antagonist, is a widely prescribed first-line agent for benign prostatic hypertrophy (BPH). Its interaction with anesthetic agents has not been described. Case Presentation: We report the case of 54-year-old Asian man undergoing elective left thyroid lobectomy. The only medication the Patient was taking was tamsulosin 0.4 mg for the past year for BPH. He developed persistent hypotension during the maintenance phase of anesthesia while receiving oxygen, nitrous oxide and 1% isoflurane. The hypotension could have been attributable to a possible interaction between inhalational anesthetic and tamsulosin. Conclusion: Vigilance for unexpected hypotension is important in surgical Patients who are treated with selective alpha1-AR blockers. If hypotension occurs, vasopressors that act directly on adrenergic receptors could be more effective

    Cognitive radio and cooperative strategies for power saving in multi-standard wireless devices

    No full text
    Energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Without any new approaches for energy saving, 4G mobile users will relentlessly be searching for power outlets rather than network access, and becoming once again bound to a single location. To avoid the so called 4G "energy trap" and to help wireless devices become more environment friendly, there is a clear need for disruptive strategies to address all aspects of power efficiency from the user devices through to the core infrastructure of the network and how these devices and equipment interact with each other. The ICT-C2POWER project is the vehicle that will address these issues through cognitive techniques and cooperation. The C2POWER case study is to research, develop and demonstrate energy saving technologies for multi-standard wireless mobile devices, exploiting the combination of cognitive radio and cooperative strategies, while still enabling the required performance in terms of data rate and QoS to support active applications. Copyright © 2010 The authors

    Cognitive radio and cooperative strategies for power saving in multi-standard wireless devices

    No full text
    Energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Without any new approaches for energy saving, 4G mobile users will relentlessly be searching for power outlets rather than network access, and becoming once again bound to a single location. To avoid the so called 4G "energy trap" and to help wireless devices become more environment friendly, there is a clear need for disruptive strategies to address all aspects of power efficiency from the user devices through to the core infrastructure of the network and how these devices and equipment interact with each other. The ICT-C2POWER project is the vehicle that will address these issues through cognitive techniques and cooperation. The C2POWER case study is to research, develop and demonstrate energy saving technologies for multi-standard wireless mobile devices, exploiting the combination of cognitive radio and cooperative strategies, while still enabling the required performance in terms of data rate and QoS to support active applications. Copyright © 2010 The authors
    corecore