50 research outputs found

    Renormalization of the baryon axial vector current in large-N_c chiral perturbation theory

    Get PDF
    The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large-N_c limit, where N_c is the number of colors. Loop graphs with octet and decuplet intermediate states cancel to various orders in N_c as a consequence of the large-N_c spin-flavor symmetry of QCD baryons. These cancellations are explicitly shown for the general case of N_f flavors of light quarks. In particular, a new generic cancellation is identified in the renormalization of the baryon axial vector current at one-loop order. A comparison with conventional heavy baryon chiral perturbation theory is performed at the physical values N_c=3, N_f=3.Comment: REVTex4, 29 pages, 2 figures, 6 tables. Equations (32) and (81) corrected. Some typos fixed. Results and conclusions remain unchange

    Radiative corrections to all charge assignments of heavy quark baryon semileptonic decays

    Get PDF
    In semileptonic decays of spin-1/2 baryons containing heavy quarks up to six charge assignments for the baryons and lepton are possible. We show that the radiative corrections to four of these possibilities can be directly obtained from the final results of the two possibilities previously studied. There is no need to recalculate integrals over virtual or real photon momentum or any traces.Comment: 15 pages, 2 figures, RevTex. Extended discussion. Final version to appear in Physical Review

    On the structure of large N cancellations in baryon chiral perturbation theory

    Get PDF
    We show how to compute loop graphs in heavy baryon chiral perturbation theory including the full functional dependence on the ratio of the Delta--nucleon mass difference to the pion mass, while at the same time automatically incorporating the 1/N cancellations that follow from the large-N spin-flavor symmetry of baryons in QCD. The one-loop renormalization of the baryon axial vector current is studied to demonstrate the procedure. A new cancellation is identified in the one-loop contribution to the baryon axial vector current. We show that loop corrections to the axial vector currents are exceptionally sensitive to deviations of the ratios of baryon-pion axial couplings from SU(6) values

    Recoil Order Chiral Corrections to Baryon Octet Axial Currents

    Full text link
    We calculate chiral corrections to the octet axial currents through O(p3){\cal O}(p^3) using baryon chiral perturbation theory (BCPT). The relativistic BCPT framework allows one to sum an infinite series of recoil corrections at a given order in the chiral expansion. We also include SU(3)-breaking operators occuring at O(p2){\cal O}(p^2) not previously considered. We determine the corresponding low-energy constants (LEC's) from hyperon semileptonic decay data using a variety of infrared regularization schemes. We find that the chiral expansion of the axial currents does not display the proper convergence behavior, regardless of which scheme is chosen. We explore the implications of our analysis for determinations of the strange quark contribution to the nucleon spin, Δs\Delta s.Comment: RevTex, 19 pages + 2 PS figure

    Determination of the Kobayashi-Maskawa-Cabibbo matrix element V_{us} under various flavor-symmetry-breaking models in hyperon semileptonic decays

    Full text link
    We study the success to describe hyperon semileptonic decays of four models that incorporate second-order SU(3) symmetry breaking corrections. The criteria to assess their success is by determining V_{us} in each of the three relevant hyperon semileptonic decays and comparing the values obtained with one another and also with the one that comes from K_{l3} decays. A strong dependence on the particular symmetry breaking model is observed. Values of V_{us} which do not agree with the one of K_{l3} are generally obtained. However, in the context of chiral perturbation theory, only the model whose corrections are O(m_s) and O(m_s^{3/2}) is successful. Using its predictions for the f_1 form factors one can quote a value of V_{us} from this model, namely, V_{us}=0.2176\pm 0.0026, which is in excellent agreement with the K_{l3} one.Comment: Final versio

    SU(3) symmetry breaking in hyperon semileptonic decays

    Get PDF
    Flavor SU(3) symmetry breaking in the hyperon semileptonic decay form-factors is analyzed using the 1/N expansion. A detailed comparison with experimental data shows that corrections to f_1 are approximately 10%, which agrees with theoretical expectations. Corrections to g_1 are compatible with first-order symmetry breaking. A fit to the experimental data allows one to predict the g_1 form factor for Xi^0 -> Sigma^+ decay. The proton matrix element of the T^8 component of the axial current (which is equal to 3F-D in the SU(3) symmetry limit) is found to be approximately 0.34.Comment: 18 pages (revtex). Discussion of theory errors added. Two redundant parameters for symmetry breaking in f1 deleted. Central values for the fits remain unchanged, but some of the errors are modifie

    Can the polarization of the strange quarks in the proton be positive ?

    Full text link
    Recently, the HERMES Collaboration at DESY, using a leading order QCD analysis of their data on semi-inclusive deep inelastic production of charged hadrons, reported a marginally positive polarization for the strange quarks in the proton. We argue that a non-negative polarization is almost impossible.Comment: 6 pages, latex, minor changes in the discussion after Eq. (9
    corecore