29 research outputs found
The Astropy Project: Building an inclusive, open-science project and status of the v2.0 core package
The Astropy project supports and fosters the development of open-source and openly-developed Python packages that provide commonly-needed functionality to the astronomical community. A key element of the Astropy project is the core package Astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of inter-operable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy project
Sensing of invading pathogens by GBPs: At the crossroads between cell-autonomous and innate immunity.
Guanylate-binding proteins (GBPs) are conserved family of IFN-inducible GTPases that play an important role in the host immunity against bacterial, viral, and protozoan pathogens. GBPs protect the host by associating with intracellular microbes, their vacuolar niche or, in the case of viruses, with their replication complex. This association results in a restriction of the respective pathogen, yet the exact molecular mechanisms of the antimicrobial functions of GBPs are still unclear. Recent work has linked the GBPs with the activation of inflammasomes, multi-protein complexes that assemble upon recognition of pathogen- or host-derived signals and that drive the release of cytokines and host cell death. Here, we will focus on the most recent findings that have started to unravel the manifold restriction mechanism controlled by GBPs in mouse and human cells, and that shed light on the molecular cues that control GBP recruitment to bacterial membranes
Sensing of invading pathogens by GBPs: At the crossroads between cell‐autonomous and innate immunity
Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.
MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin
Guanylate Binding Proteins Enable Rapid Activation of Canonical and Noncanonical Inflammasomes in Chlamydia-Infected Macrophages
Interferon (IFN)-inducible guanylate binding proteins (GBPs) mediate cell-autonomous host resistance to bacterial pathogens and promote inflammasome activation. The prevailing model postulates that these two GBP-controlled activities are directly linked through GBP-dependent vacuolar lysis. It was proposed that the rupture of pathogen-containing vacuoles (PVs) by GBPs destroyed the microbial refuge and simultaneously contaminated the host cell cytosol with microbial activators of inflammasomes. Here, we demonstrate that GBP-mediated host resistance and GBP-mediated inflammatory responses can be uncoupled. We show that PVs formed by the rodent pathogen Chlamydia muridarum, so-called inclusions, remain free of GBPs and that C. muridarum is impervious to GBP-mediated restrictions on bacterial growth. Although GBPs neither bind to C. muridarum inclusions nor restrict C. muridarum growth, we find that GBPs promote inflammasome activation in C. muridarum-infected macrophages. We demonstrate that C. muridarum infections induce GBP-dependent pyroptosis through both caspase-11-dependent noncanonical and caspase-1-dependent canonical inflammasomes. Among canonical inflammasomes, we find that C. muridarum and the human pathogen Chlamydia trachomatis activate not only NLRP3 but also AIM2. Our data show that GBPs support fast-kinetics processing and secretion of interleukin-1β (IL-1β) and IL-18 by the NLRP3 inflammasome but are dispensable for the secretion of the same cytokines at later times postinfection. Because IFN-γ fails to induce IL-1β transcription, GBP-dependent fast-kinetics inflammasome activation can drive the preferential processing of constitutively expressed IL-18 in IFN-γ-primed macrophages in the absence of prior Toll-like receptor stimulation. Together, our results reveal that GBPs control the kinetics of inflammasome activation and thereby shape macrophage responses to Chlamydia infections
Top 10 most prevalent small RNA reads of <i>L. pneumophila</i> origin.
a<p>Predicted stem-loop structure and origin of small RNA are depicted in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0106434#pone.0106434.s002" target="_blank">Fig. S2</a>. as, anti-sense.</p><p>Top 10 most prevalent small RNA reads of <i>L. pneumophila</i> origin.</p
Deep-sequencing of small RNAs in <i>M. tuberculosis</i> infected cells and mice.
<p>These figures were generated as described in Fig. 1, for <i>in vitro</i> infection of THP-1 cells (A and B) and <i>in vivo</i> infection of mice (C and D).</p
Deep-sequencing of small RNAs in <i>L. pneumophila</i>-infected cells.
<p>Results of deep-sequencing for <i>L. pneumophila</i>. The figures were generated as described in Fig. 1.</p
Top 10 small RNA reads of <i>M. smegmatis</i>.
a<p>The predicted stem-loop structures and origin of these small RNAs is depicted in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0106434#pone.0106434.s004" target="_blank">Fig. S4</a>.</p><p>Top 10 small RNA reads of <i>M. smegmatis</i>.</p