12 research outputs found

    Individual caspase-10 isoforms play distinct and opposing roles in the initiation of death receptor-mediated tumour cell apoptosis

    Get PDF
    The cysteine protease caspase-8 is an essential executioner of the death receptor (DR) apoptotic pathway. The physiological function of its homologue caspase-10 remains poorly understood, and the ability of caspase-10 to substitute for caspase-8 in the DR apoptotic pathway is still controversial. Here, we analysed the particular contribution of caspase-10 isoforms to DR-mediated apoptosis in neuroblastoma (NB) cells characterised by their resistance to DR signalling. Silencing of caspase-8 in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive NB cells resulted in complete resistance to TRAIL, which could be reverted by overexpression of caspase-10A or -10D. Overexpression experiments in various caspase-8-expressing tumour cells also demonstrated that caspase-10A and -10D isoforms strongly increased TRAIL and FasL sensitivity, whereas caspase-10B or -10G had no effect or were weakly anti-apoptotic. Further investigations revealed that the unique C-terminal end of caspase-10B was responsible for its degradation by the ubiquitin–proteasome pathway and for its lack of pro-apoptotic activity compared with caspase-10A and -10D. These data highlight in several tumour cell types, a differential pro- or anti-apoptotic role for the distinct caspase-10 isoforms in DR signalling, which may be relevant for fine tuning of apoptosis initiation

    RNA Silencing of Mcl-1 Enhances ABT-737-Mediated Apoptosis in Melanoma: Role for a Caspase-8-Dependent Pathway

    Get PDF
    BACKGROUND: Malignant melanoma is resistant to almost all conventional forms of chemotherapy. Recent evidence suggests that anti-apoptotic proteins of the Bcl-2 family are overexpressed in melanoma and may contribute to melanoma's striking resistance to apoptosis. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xl and Bcl-w, has demonstrated efficacy in several forms of leukemia, lymphoma as well as solid tumors. However, overexpression of Mcl-1, a frequent observance in melanoma, is known to confer ABT-737 resistance. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that knockdown of Mcl-1 greatly reduces cell viability in combination with ABT-737 in six different melanoma cell lines. We demonstrate that the cytotoxic effect of this combination treatment is due to apoptotic cell death involving not only caspase-9 activation but also activation of caspase-8, caspase-10 and Bid, which are normally associated with the extrinsic pathway of apoptosis. Caspase-8 (and caspase-10) activation is abrogated by inhibition of caspase-9 but not by inhibitors of the death receptor pathways. Furthermore, while caspase-8/-10 activity is required for the full induction of cell death with treatment, the death receptor pathways are not. Finally, we demonstrate that basal levels of caspase-8 and Bid correlate with treatment sensitivity. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the combination of ABT-737 and Mcl-1 knockdown represents a promising, new treatment strategy for malignant melanoma. We also report a death receptor-independent role for extrinsic pathway proteins in treatment response and suggest that caspase-8 and Bid may represent potential markers of treatment sensitivity
    corecore