282 research outputs found

    Singularity free gravitational collapse in an effective dynamical quantum spacetime

    Get PDF
    We model the gravitational collapse of heavy massive shells including its main quantum corrections. Among these corrections, quantum improvements coming from Quantum Einstein Gravity are taken into account, which provides us with an effective quantum spacetime. Likewise, we consider dynamical Hawking radiation by modeling its back-reaction once the horizons have been generated. Our results point towards a picture of gravitational collapse in which the collapsing shell reaches a minimum non-zero radius (whose value depends on the shell initial conditions) with its mass only slightly reduced. Then, there is always a rebound after which most (or all) of the mass evaporates in the form of Hawking radiation. Since the mass never concentrates in a single point, no singularity appears.Comment: 19 pages, 5 figure

    Evaporation of (quantum) black holes and energy conservation

    Get PDF
    We consider Hawking radiation as due to a tunneling process in a black hole were quantum corrections, derived from Quantum Einstein Gravity, are taken into account. The consequent derivation, satisfying conservation laws, leads to a deviation from an exact thermal spectrum. The non-thermal radiation is shown to carry information out of the black hole. Under the appropriate approximation, a quantum corrected temperature is assigned to the black hole. The evolution of the quantum black hole as it evaporates is then described by taking into account the full implications of energy conservation as well as the back-scattered radiation. It is shown that, as a critical mass of the order of Planck's mass is reached, the evaporation process decelerates abruptly while the black hole mass decays towards this critical mass.Comment: 16 pages, 2 figure

    The mechanism why colliders could create quasi-stable black holes

    Get PDF
    It has been postulated that black holes could be created in particle collisions within the range of the available energies for nowadays colliders (LHC). In this paper we analyze the evaporation of a type of black holes that are candidates for this specific behaviour, namely, small black holes on a brane in a world with large extra-dimensions. We examine their evolution under the assumption that energy conservation is satisfied during the process and compare it with the standard evaporation approach. We claim that, rather than undergoing a quick total evaporation, black holes become quasi-stable. We comment on the (absence of) implications for safety of this result. We also discuss how the presence of black holes together with the correctness of the energy conservation approach might be experimentally verified.Comment: 16 pages, 3 figure

    On the invariant causal characterization of singularities in spherically symmetric spacetimes

    Get PDF
    The causal character of singularities is often studied in relation to the existence of naked singularities and the subsequent possible violation of the cosmic censorship conjecture. Generally one constructs a model in the framework of General Relativity described in some specific coordinates and finds an ad hoc procedure to analyze the character of the singularity. In this article we show that the causal character of the zero-areal-radius (R=0) singularity in spherically symmetric models is related with some specific invariants. In this way, if some assumptions are satisfied, one can ascertain the causal character of the singularity algorithmically through the computation of these invariants and, therefore, independently of the coordinates used in the model.Comment: A misprint corrected in Theor. 4.1 /Cor. 4.

    Vacuum spacetimes with a spacelike, hypersurface-orthogonal Killing vector: reduced equations in a canonical frame

    Full text link
    The Newman-Penrose equations for spacetimes having one spacelike Killing vector are reduced -- in a geometrically defined "canonical frame'' -- to a minimal set, and its differential structure is studied. Expressions for the frame vectors in an arbitrary coordinate basis are given, and coordinate-independent choices of the metric functions are suggested which make the components of the Ricci tensor in the direction of the Killing vector vanish.Comment: 13 pages, no figures, LaTeX, to be published in Class. Quantum Gravity; v2: added/rephrased content, corrected typos, changed 1 referenc

    On the Papapetrou field in vacuum

    Get PDF
    In this paper we study the electromagnetic fields generated by a Killing vector field in vacuum space-times (Papapetrou fields). The motivation of this work is to provide new tools for the resolution of Maxwell's equations as well as for the search, characterization, and study of exact solutions of Einstein's equations. The first part of this paper is devoted to an algebraic study in which we give an explicit and covariant procedure to construct the principal null directions of a Papapetrou field. In the second part, we focus on the main differential properties of the principal directions, studying when they are geodesic, and in that case we compute their associated optical scalars. With this information we get the conditions that a principal direction of the Papapetrou field must satisfy in order to be aligned with a multiple principal direction of the Weyl tensor in the case of algebraically special vacuum space-times. Finally, we illustrate this study using the Kerr, Kasner and pp waves space-times.Comment: 24 pages, LaTeX2e, IOP style. To appear in Classical and Quantum Gravit

    General approach to the study of vacuum space-times with an isometry

    Get PDF
    In vacuum space-times the exterior derivative of a Killing vector field is a 2-form (named here as the Papapetrou field) that satisfies Maxwell's equations without electromagnetic sources. In this paper, using the algebraic structure of the Papapetrou field, we will set up a new formalism for the study of vacuum space-times with an isometry, which is suitable to investigate the connections between the isometry and the Petrov type of the space-time. This approach has some advantages, among them, it leads to a new classification of these space-times and the integrability conditions provide expressions that determine completely the Weyl curvature. These facts make the formalism useful for application to any problem or situation with an isometry and requiring the knowledge of the curvature.Comment: 24 pages, LaTeX2e, IOP style. To appear in Classical and Quantum Gravit

    Quasinormal modes for the charged Vaidya metric

    Full text link
    The scalar wave equation is considered in the background of a charged Vaidya metric in double null coordinates (u,v)(u,v) describing a non-stationary charged black hole with varying mass m(v)m(v) and charge q(v)q(v). The resulting time-dependent quasinormal modes are presented and analyzed. We show, in particular, that it is possible to identify some signatures in the quasinormal frequencies from the creation of a naked singularity.Comment: 4 pages. Prepared for the proceedings of the Spanish Relativity meeting (ERE2010), Granada, Spain, September 6-10, 201

    The Insulin receptor catalyzes the tyrosine phosphorylation o Caveolin 1

    Get PDF
    Our previous studies revealed that insulin stimulates the tyrosine phosphorylation of caveolin in 3T3L1 adipocytes. To explore the mechanisms involved in this event, we evaluated the association of the insulin receptor with caveolin. The receptor was detected in a Triton-insoluble low density fraction, co-sedimenting with caveolin and flotillin on sucrose density gradients. We also detected the receptor in caveolin-enriched rosette structures by immunohistochemical analysis of plasma membrane sheets from 3T3L1 adipocytes. Insulin stimulated the phosphorylation of caveolin-1 on Tyr14. This effect of the hormone was not blocked by overexpression of mutant forms of the Cbl-associated protein that block the translocation of phospho-Cbl to the caveolin-enriched, lipid raft microdomains. Moreover, this phosphorylation event was also unaffected by inhibitors of the MAPK and phosphatidylinositol 3-kinase pathways. Although previous studies demonstrated that the Src family kinase Fyn was highly enriched in caveolae, an inhibitor of this kinase had no effect on insulin-stimulated caveolin phosphorylation. Interestingly, overexpression of a mutant form of caveolin that failed to interact with the insulin receptor did not undergo phosphorylation. Taken together, these data indicate that the insulin receptor directly catalyzes the tyrosine phosphorylation of caveolin. Previous article in issu
    • …
    corecore