14,411 research outputs found
A universally programmable Quantum Cellular Automaton
We discuss the role of classical control in the context of reversible quantum
cellular automata. Employing the structure theorem for quantum cellular
automata, we give a general construction scheme to turn an arbitrary cellular
automaton with external classical control into an autonomous one, thereby
proving the computational equivalence of these two models. We use this
technique to construct a universally programmable cellular automaton on a
one-dimensional lattice with single cell dimension 12.Comment: 4 pages, 4 figures, minor changes in introduction, fixed typos,
accepted for publication in Physical Review Letter
Patterns of past and recent conversion of indigenous grasslands in the South Island, New Zealand
We used recent satellite imagery to quantify the extent, type, and rate of conversion of remaining indigenous grasslands in the inland eastern South Island of New Zealand in recent years. We describe the pattern of conversion in relation to national classifications of land use capability and land environments, and ecological and administrative districts and regions. We show that although large areas of indigenous grasslands remain, grassland loss has been ongoing. Indigenous grassland was reduced in the study area by 3% (70 200 ha) between 1990 and 2008. Almost two-thirds of post-1990 conversion occurred in threatened environments with less than 30% of indigenous cover remaining, primarily in the Waitaki, Mackenzie and Central Otago administrative districts. This conversion occurred primarily on non-arable land. In the Mackenzie and Waitaki districts the rate of conversion in 2001-2008 was approximately twice that in 1990-2001. Opportunities to protect more of the full range of indigenous grasslands lie with the continuing tenure review process in these districts
No Radio Afterglow from the Gamma-Ray Burst of February 28, 1997
We present radio observations of the gamma-ray burster GRB 970228 made with
the Very Large Array (VLA) and the Owens Valley Radio Observatory (OVRO)
spanning a range of postburst timescales from one to 300 days. A search for a
time-variable radio source was conducted covering an area which included a
fading X-ray source and an optical transient, both of which are thought to be
the long wavelength counterparts to the gamma-ray burst. At the position of the
optical transient sensitive limits between 10 uJy and 1 mJy can be placed on
the absence of a radio counterpart to GRB 970228 between 1.4 and 240 GHz. We
apply a simple formulation of a fireball model which has been used with some
success to reproduce the behavior of the optical and X-ray light curves. Using
this model we conclude that the radio non-detections are consistent with the
peak flux density of the afterglow lying between 20-40 uJy and it requires that
the optical flux peaked between 4 and 16 hours after the burst.Comment: ApJ Let (submitted
Detonation wave diffraction in Hâ-Oâ-Ar mixtures
In the present study, we have examined the diffraction of detonation in weakly unstable hydrogenâoxygenâargon mixtures. High accuracy and computational efficiency are obtained using a high-order WENO scheme together with adaptive mesh refinement, which enables handling realistic geometries with resolution at the micrometer level. Both detailed chemistry and spectroscopic models of laser induced fluorescence and chemiluminescence were included to enable a direct comparison with experimental data. Agreement was found between the experiments and the simulations in terms of detonation diffraction structure both for sub-critical and super-critical regimes. The predicted wall reflection distance is about 12â14 cell widths, in accordance with previous experimental studies. Computations show that the re-initiation distance is relatively constant, at about 12â15 cell widths, slightly above the experimental value of 11 cell widths. The predicted critical channel height is 10â11 cell widths, which differs from experiments in circular tubes but is consistent with rectangular channel results
Safety training for migrant workers in the construction industry: A systematic review and future research agenda
In the construction sector, there is a high risk for accidents, injuries, and fatalities, particularly for migrant workers who comprise a large proportion of the workforce. This article presents a systematic literature review of current safety training provision for migrant construction workers. In the interests of rigor, we draw on the learning, training transfer, and training effectiveness literatures, exploring not only the extent to which training brings about the intended outcomes, in terms of enhanced safety behaviors, and reduced accidents and injuries, but also the factors that influence learning and transfer of training back to the working environment. The literature search revealed only 18 peer-reviewed articles have been published since 2000, which is particularly surprising, given the disproportionate accident and fatality rates for migrant workers. Consequently, we propose a research agenda to enhance safety training for low skilled, migrant and native construction workers, drawing on cognitive and social constructivist instructional design models, which view training as a dynamic process involving active participation of trainees. We advocate the importance of attending to the situational context in which workers are embedded, including labor market conditions, social relations, and cultural differences. Finally, we propose the need for further longitudinal, multidimensional research to evaluate the impact of safety training on learning, transfer of training, and individual- and organizational-level outcomes, such as behavior change, and accident and fatality rates
The Enigmatic Radio Afterglow of GRB 991216
We present wide-band radio observations spanning from 1.4 GHz to 350 GHz of
the afterglow of GRB 991216, taken from 1 to 80 days after the burst. The
optical and X-ray afterglow of this burst were fairly typical and are explained
by a jet fireball. In contrast, the radio light curve is unusual in two
respects: (a) the radio light curve does not show the usual rise to maximum
flux on timescales of weeks and instead appears to be declining already on day
1 and (b) the power law indices show significant steepening from the radio
through the X-ray bands. We show that the standard fireball model, in which the
afterglow is from a forward shock, is unable to account for (b) and we conclude
that the bulk of the radio emission must arise from a different source. We
consider two models, neither of which can be ruled out with the existing data.
In the first (conventional) model, the early radio emission is attributed to
emission from the reverse shock as in the case of GRB 990123. We predict that
the prompt optical emission would have been as bright (or brighter) than 8th
magnitude. In the second (exotic) model, the radio emission originates from the
forward shock of an isotropically energetic fireball (10^54 erg) expanding into
a tenuous medium (10^-4 cm^-3). The resulting fireball would remain
relativistic for months and is potentially resolvable with VLBI techniques.
Finally, we note that the near-IR bump of the afterglow is similar to that seen
in GRB 971214 and no fireball model can explain this bump.Comment: ApJ, submitte
Recommended from our members
Southern annular mode dynamics in observations and models, Part II: Eddy feedbacks
Many global climate models (GCMs) have trouble simulating Southern Annular Mode (SAM) variability correctly, particularly in the Southern Hemisphere summer season where it tends to be too persistent. In this two part study, a suite of experiments with the Canadian Middle Atmosphere Model (CMAM) is analyzed to improve our understanding of the dynamics of SAM variability and its deficiencies in GCMs. Here, an examination of the eddy-mean flow feedbacks is presented by quantification of the feedback strength as a function of zonal scale and season using a new methodology that accounts for intraseasonal forcing of the SAM.
In the observed atmosphere, in the summer season, a strong negative feedback by planetary scale waves, in particular zonal wavenumber 3, is found in a localized region in the south west Pacific. It cancels a large proportion of the positive feedback by synoptic and smaller scale eddies in the zonal mean, resulting in a very weak overall eddy feedback on the SAM. CMAM is deficient in this negative feedback by planetary scale waves, making a substantial contribution to its bias in summertime SAM persistence. Furthermore, this bias is not alleviated by artificially improving the climatological circulation, suggesting that climatological circulation biases are not the cause of the planetary wave feedback deficiency in the model.
Analysis of the summertime eddy feedbacks in the CMIP-5 models confirms that this is indeed a common problem among GCMs, suggesting that understanding this planetary wave feedback and the reason for its deficiency in GCMs is key to improving the fidelity of simulated SAM variability in the summer season
Recommended from our members
Southern annular mode dynamics in observations and models, Part I: The influence of climatological zonal wind biases in a comprehensive GCM
A common bias among global climate models (GCMs) is that they exhibit tropospheric southern annular mode (SAM) variability that is much too persistent in the Southern Hemisphere (SH) summertime. This is of concern for the ability to accurately predict future SH circulation changes, so it is important that it be understood and alleviated. In this two-part study, specifically targeted experiments with the Canadian Middle Atmosphere Model (CMAM) are used to improve understanding of the enhanced summertime SAM persistence. Given the ubiquity of this bias among comprehensive GCMs, it is likely that the results will be relevant for other climate models.
Here, in Part I, the influence of climatological circulation biases on SAM variability is assessed, with a particular focus on two common biases that could enhance summertime SAM persistence: the too-late breakdown of the Antarctic stratospheric vortex and the equatorward bias in the SH tropospheric midlatitude jet. Four simulations are used to investigate the role of each of these biases in CMAM. Nudging and bias correcting procedures are used to systematically remove zonal-mean stratospheric variability and/or remove climatological zonal wind biases. The SAM time-scale bias is not alleviated by improving either the timing of the stratospheric vortex breakdown or the climatological jet structure. Even in the absence of stratospheric variability and with an improved climatological circulation, the model time scales are biased long. This points toward a bias in internal tropospheric dynamics that is not caused by the tropospheric jet structure bias. The underlying cause of this is examined in more detail in Part II of this study
- âŠ