540 research outputs found

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Forced electrostriction by constraining polarization switching enhances the electromechanical strain properties of incipient piezoceramics

    Get PDF
    Recently developed lead-free incipient piezoceramics are promising candidates for off-resonance actuator applications due to their exceptionally large electromechanical strains. Their commercialization currently faces three critical challenges: the high driving electric field required for delivering the potentially large strains; large strain hysteresis, which is inappropriate for precision devices; and relatively high temperature dependencies. We propose that instead of utilizing incipient piezoelectric strains, harnessing the maximum possible electrostriction would provide a highly effective way to resolve all these challenges. This concept was experimentally demonstrated using textured 0.97Bi(1/2)(Na0.78K0.22) 1/2TiO3-0.03BiAlO(3) as an exemplary incipient piezoceramic, whereby texturing was achieved using a reactive templated grain-growth technique. The manufactured textured ceramic is characterized by S-max/E-max of 995 pm V-1 and an electrostrictive coefficient, Q(33), of 0.049 m(4) C-2. Both these parameters are as large as those of single crystals. The current work presents a significant advancement in the field of lead-free ceramics and can guide future efforts in this direction. In addition, the concept presented here can be easily transferred to other disciplines involving the design of functional properties of various materiaope

    Identifying the structure of Zn-N-2 active sites and structural activation

    Get PDF
    Identification of active sites is one of the main obstacles to rational design of catalysts for diverse applications. Fundamental insight into the identification of the structure of active sites and structural contributions for catalytic performance are still lacking. Recently, X-ray absorption spectroscopy (XAS) and density functional theory (DFT) provide important tools to disclose the electronic, geometric and catalytic natures of active sites. Herein, we demonstrate the structural identification of Zn-N-2 active sites with both experimental/theoretical X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Further DFT calculations reveal that the oxygen species activation on Zn-N-2 active sites is significantly enhanced, which can accelerate the reduction of oxygen with high selectivity, according well with the experimental results. This work highlights the identification and investigation of Zn-N-2 active sites, providing a regular principle to obtain deep insight into the nature of catalysts for various catalytic applications

    Reflection algebra, Yangian symmetry and bound-states in AdS/CFT

    Full text link
    We present the `Heisenberg picture' of the reflection algebra by explicitly constructing the boundary Yangian symmetry of an AdS/CFT superstring which ends on a boundary with non-trivial degrees of freedom and which preserves the full bulk Lie symmetry algebra. We also consider the spectrum of bulk and boundary states and some automorphisms of the underlying algebras.Comment: 31 page, 8 figures. Updated versio

    Neural Network Parameterizations of Electromagnetic Nucleon Form Factors

    Full text link
    The electromagnetic nucleon form-factors data are studied with artificial feed forward neural networks. As a result the unbiased model-independent form-factor parametrizations are evaluated together with uncertainties. The Bayesian approach for the neural networks is adapted for chi2 error-like function and applied to the data analysis. The sequence of the feed forward neural networks with one hidden layer of units is considered. The given neural network represents a particular form-factor parametrization. The so-called evidence (the measure of how much the data favor given statistical model) is computed with the Bayesian framework and it is used to determine the best form factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the prior assumptions is added. The manuscript contains 4 new figures and 2 new tables (32 pages, 15 figures, 2 tables

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C

    Genetic predictors of acute toxicities related to radiation therapy following lumpectomy for breast cancer: a case-series study

    Get PDF
    INTRODUCTION: The cytotoxic effects of radiation therapy are mediated primarily through increased formation of hydroxyl radicals and reactive oxygen species, which can damage cells, proteins and DNA; the glutathione S-transferases (GSTs) function to protect against oxidative stress. We hypothesized that polymorphisms encoding reduced or absent activity in the GSTs might result in greater risk for radiation-associated toxicity. METHODS: Women receiving therapy in radiation units in Germany following lumpectomy for breast cancer (1998–2001) provided a blood sample and completed an epidemiological questionnaire (n = 446). Genotypes were determined using Sequonom MALDI-TOF (GSTA1, GSTP1) and Masscode (GSTM1, GSTT1). Biologically effective radiotherapy dose (BED) was calculated, accounting for differences in fractionation and overall treatment time. Side effects considered were grade 2c and above, as classified using the modified Common Toxicity Criteria. Predictors of toxicity were modelled using Cox regression models in relation to BED, with adjustment for treating clinic, photon field, beam energy and boost method, and potential confounding variables. RESULTS: Low activity GSTP1 genotypes were associated with a greater than twofold increase in risk for acute skin toxicities (adjusted hazard ratio 2.28, 95% confidence interval 1.04–4.99). No associations were noted for the other GST genotypes. CONCLUSION: These data indicate that GSTP1 plays an important role in protecting normal cells from damage associated with radiation therapy. Studies examining the effects of GSTP1 polymorphisms on toxicity, recurrence and survival will further inform individualized therapeutics based on genotypes

    Hepatitis B and C virus prevalence in a rural area of South Korea: the role of acupuncture

    Get PDF
    A cross-sectional study evaluated the prevalence of and the risk factors for hepatitis C and B viruses among 700 adults above the age of 40 years in a rural area of South Korea. Seropositivity for hepatitis C virus antibody (11.0%, 95% confidence interval: 8.7–13.6) was higher than that for hepatitis B surface antigen (4.4%, 95% confidence interval: 3.0–6.2). Anti-hepatitis C virus seropositivity was associated with a history of repeated acupuncture (odds ratio=2.1, 95% confidence interval: 1.1–4.0), and blood transfusion (odds ratio=5.5, 95% confidence interval: 1.6–19.3) before 1992 when hepatitis C virus screening in blood donors became mandatory. Hepatitis C virus 2a was the most prevalent genotype, followed by 1b. Hepatitis C virus risk attributable to acupuncture was 38% (9% for men and 55% for women). Safer acupuncture practice has become a priority for hepatitis C virus prevention in South Korea

    Deoxycholic acid induces the overexpression of intestinal mucin, MUC2, via NF-kB signaling pathway in human esophageal adenocarcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mucin alterations are a common feature of esophageal neoplasia, and alterations in MUC2 mucin have been associated with tumor progression in the esophagus. Bile acids have been linked to esophageal adenocarcinoma and mucin secretion, but their effects on mucin gene expression in human esophageal adenocarcinoma cells is unknown.</p> <p>Methods</p> <p>Human esophageal adenocarcinoma cells were treated 18 hours with 50–300 μM deoxycholic acid, chenodeoxycholic acid, or taurocholic acid. MUC2 transcription was assayed using a MUC2 promoter reporter luciferase construct and MUC2 protein was assayed by Western blot analysis. Transcription Nuclear factor-κB activity was measured using a Nuclear factor-κB reporter construct and confirmed by Western blot analysis for Nuclear factor-κB p65.</p> <p>Results</p> <p>MUC2 transcription and MUC2 protein expression were increased four to five fold by bile acids in a time and dose-dependent manner with no effect on cell viability. Nuclear factor-κB activity was also increased. Treatment with the putative chemopreventive agent aspirin, which decreased Nuclear factor-κB activity, also decreased MUC2 transcription. Nuclear factor-κB p65 siRNA decreased MUC2 transcription, confirming the significance of Nuclear factor-κB in MUC2 induction by deoxycholic acid. Calphostin C, a specific inhibitor of protein kinase C (PKC), greatly decreased bile acid induced MUC2 transcription and Nuclear factor-κB activity, whereas inhibitors of MAP kinase had no effect.</p> <p>Conclusion</p> <p>Deoxycholic acid induced MUC2 overexpression in human esophageal adenocarcinoma cells by activation of Nuclear factor-κB transcription through a process involving PKC-dependent but not PKA, independent of activation of MAP kinase.</p
    corecore