34,472 research outputs found
The cosmological constant and the relaxed universe
We study the role of the cosmological constant (CC) as a component of dark
energy (DE). It is argued that the cosmological term is in general unavoidable
and it should not be ignored even when dynamical DE sources are considered.
From the theoretical point of view quantum zero-point energy and phase
transitions suggest a CC of large magnitude in contrast to its tiny observed
value. Simply relieving this disaccord with a counterterm requires extreme
fine-tuning which is referred to as the old CC problem. To avoid it, we discuss
some recent approaches for neutralising a large CC dynamically without adding a
fine-tuned counterterm. This can be realised by an effective DE component which
relaxes the cosmic expansion by counteracting the effect of the large CC.
Alternatively, a CC filter is constructed by modifying gravity to make it
insensitive to vacuum energy.Comment: 6 pages, no figures, based on a talk presented at PASCOS 201
Microwave Scattering and Noise Emission from Afterglow Plasmas in a Magnetic Field
The microwave reflection and noise emission (extraordinary mode) from cylindrical rare‐gas (He, Ne, Ar) afterglow plasmas in an axial magnetic field is described. Reflection and noise emission are measured as a function of magnetic field near electron cyclotron resonance (ω ≈ ω_c) with electron density as a parameter (ω_p < ω). A broad peak, which shifts to lower values of ω_c/ω) as electron density increases, is observed for (ω_c/ω) ≤ 1. For all values of electron density a second sharp peak is found very close to cyclotron resonance in reflection measurements. This peak does not occur in the emission data. Calculations of reflection and emission using a theoretical model consisting of a one‐dimensional, cold plasma slab with nonuniform electron density yield results in qualitative agreement with the observations. Both the experimental and theoretical results suggest that the broad, density‐dependent peak involves resonance effects at the upper hybrid frequency ((ω_h)^2 = (ω_c)^2 + (ω_p)^2) of the plasma
Effect of hydrostatic pressure on the ambient pressure superconductor CePt_3Si
We studied the evolution of superconductivity (sc) and antiferromagnetism
(afm) in the heavy fermion compound CePt_3Si with hydrostatic pressure. We
present a pressure-temperature phase diagram established by electrical
transport measurements. Pressure shifts the superconducting transition
temperature, T_c, to lower temperatures. Antiferromagnetism is suppressed at a
critical pressure P_c=0.5 GPa.Comment: 2 pages, 2 figures, proceedings SCES'0
NEOWISE observations of comet C/2013 A1 (Siding Spring) as it approaches Mars
The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) mission
observed comet C/2013 A1 (Siding Spring) three times at 3.4 {\mu}m and 4.6
{\mu}m as the comet approached Mars in 2014. The comet is an extremely
interesting target since its close approach to Mars in late 2014 will be
observed by various spacecraft in-situ. The observations were taken in 2014
Jan., Jul. and Sep. when the comet was at heliocentric distances of 3.82 AU,
1.88 AU, and 1.48 AU. The level of activity increased significantly between the
Jan. and Jul. visits but then decreased by the time of the observations in
Sep., approximately 4 weeks prior to its close approach to Mars. In this work
we calculate Af\r{ho} values, and CO/CO2 production rates.Comment: 9 pages, 3 figures, accepted by Astrophysical Journal Letter
Pair breaking by nonmagnetic impurities in the noncentrosymmetric superconductor CePt3Si
We have studied the effect of Ge substitution and pressure on the
heavy-fermion superconductor CePt3Si. Ge substitution on the Si site acts as
negative chemical pressure leading to an increase in the unit-cell volume but
also introduces chemical disorder. We carried out electrical resistivity and ac
heat-capacity experiments under hydrostatic pressure on CePt3Si1-xGex (x=0,
0.06). Our experiments show that the suppression of superconductivity in
CePt3Si1-xGex is mainly caused by the scattering potential, rather than volume
expansion, introduced by the Ge dopants. The antiferromagnetic order is
essentially not affected by the chemical disorder.Comment: 4 pages, 4 figure
Regularization independent of the noise level: an analysis of quasi-optimality
The quasi-optimality criterion chooses the regularization parameter in
inverse problems without taking into account the noise level. This rule works
remarkably well in practice, although Bakushinskii has shown that there are
always counterexamples with very poor performance. We propose an average case
analysis of quasi-optimality for spectral cut-off estimators and we prove that
the quasi-optimality criterion determines estimators which are rate-optimal
{\em on average}. Its practical performance is illustrated with a calibration
problem from mathematical finance.Comment: 18 pages, 3 figure
Perturbations in the relaxation mechanism for a large cosmological constant
Recently, a mechanism for relaxing a large cosmological constant (CC) has
been proposed [arxiv:0902.2215], which permits solutions with low Hubble rates
at late times without fine-tuning. The setup is implemented in the LXCDM
framework, and we found a reasonable cosmological background evolution similar
to the LCDM model with a fine-tuned CC. In this work we analyse analytically
the perturbations in this relaxation model, and we show that their evolution is
also similar to the LCDM model, especially in the matter era. Some tracking
properties of the vacuum energy are discussed, too.Comment: 18 pages, LaTeX; discussion improved, accepted by CQ
Momentum distributions in time-dependent density functional theory: Product phase approximation for non-sequential double ionization in strong laser fields
We investigate the possibility to deduce momentum space properties from
time-dependent density functional calculations. Electron and ion momentum
distributions after double ionization of a model Helium atom in a strong
few-cycle laser pulse are studied. We show that, in this case, the choice of
suitable functionals for the observables is considerably more important than
the choice of the correlation potential in the time-dependent Kohn-Sham
equations. By comparison with the solution of the time-dependent Schroedinger
equation, the insufficiency of functionals neglecting electron correlation is
demonstrated. We construct a functional of the Kohn-Sham orbitals, which in
principle yields the exact momentum distributions of the electrons and the ion.
The product-phase approximation is introduced, which reduces the problem of
approximating this functional significantly.Comment: 8 pages, 5 figures, RevTeX
- …