507 research outputs found

    Dynamical response functions in the quantum Ising chain with a boundary

    Full text link
    We determine dynamical response functions <O(t,x1)O(0,x2)><{\cal O}^\dagger(t,x_1){\cal O}(0,x_2)> in the scaling limit of the quantum Ising chain on the half line in the presence of a boundary magnetic field. Using a spectral representation in terms of infinite volume form factors and a boundary state, we derive an expansion for the correlator that is found to be rapidly convergent as long as |\frac{x_1+x_2}{\xi}|\agt 0.2 where ξ\xi is the correlation length. At sufficiently late times we observe oscillatory behaviour of the correlations arbitrarily far away from the boundary. We investigate the effects of the boundary bound state that is present for a range of boundary magnetic fields.Comment: 32 page

    Origin of the Mott Gap

    Full text link
    We show exactly that the only charged excitations that exist in the strong-coupling limit of the half-filled Hubbard model are gapped composite excitations generated by the dynamics of the charge 2e2e boson that appears upon explicit integration of the high-energy scale. At every momentum, such excitations have non-zero spectral weight at two distinct energy scales separated by the on-site repulsion UU. The result is a gap in the spectrum for the composite excitations accompanied by a discontinuous vanishing of the density of states at the chemical potential when UU exceeds the bandwidth. Consequently, we resolve the long-standing problem of the cause of the charge gap in a half-filled band in the absence of symmetry breaking.Comment: 6 pages, 2 figures: Expanded Published versio

    Determinant representation for a quantum correlation function of the lattice sine-Gordon model

    Full text link
    We consider a completely integrable lattice regularization of the sine-Gordon model with discrete space and continuous time. We derive a determinant representation for a correlation function which in the continuum limit turns into the correlation function of local fields. The determinant is then embedded into a system of integrable integro-differential equations. The leading asymptotic behaviour of the correlation function is described in terms of the solution of a Riemann Hilbert Problem (RHP) related to the system of integro-differential equations. The leading term in the asymptotical decomposition of the solution of the RHP is obtained.Comment: 30 pages Latex2e, 2 Figures, epsf. Significantly extended and revised versio

    Quench Dynamics in a Model with Tuneable Integrability Breaking

    Full text link
    We consider quantum quenches in an integrable quantum chain with tuneable-integrability-breaking interactions. In the case where these interactions are weak, we demonstrate that at intermediate times after the quench local observables relax to a prethermalized regime, which can be described by a density matrix that can be viewed as a deformation of a generalized Gibbs ensemble. We present explicit expressions for the approximately conserved charges characterizing this ensemble. We do not find evidence for a crossover from the prethermalized to a thermalized regime on the time scales accessible to us. Increasing the integrability-breaking interactions leads to a behaviour that is compatible with eventual thermalization.Comment: 22 pages, 35 figures, minor updates to manuscrip

    Superconductivity generated by coupling to a Cooperon in a 2-dimensional array of 4-leg Hubbard ladders

    Full text link
    Starting from an array of four-leg Hubbard ladders weakly doped away from half-filling and weakly coupled by inter-ladder tunneling, we derive an effective low energy model which contains a partially truncated Fermi surface and a well defined Cooperon excitation formed by a bound pair of holes. An attractive interaction in the Cooper channel is generated on the Fermi surface through virtual scattering into the Cooperon state. Although the model is derived in the weak coupling limit of a four-leg ladder array, an examination of exact results on finite clusters for the strong coupling t-J model suggests the essential features are also present for a strong coupling Hubbard model on a square lattice near half-filling.Comment: 20 pages, 4 figure

    Eight state supersymmetric UU model of strongly correlated fermions

    Get PDF
    An integrable eight state supersymmtric UU model is proposed, which is a fermion model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. It has an gl(31)gl(3|1) supersymmetry and contains one symmetry-preserving free parameter. The model is solved and the Bethe ansatz equations are obtained.Comment: Some cosmetic changes; to appear in Phys. Rev.

    Dynamical Structure Factor in Cu Benzoate and other spin-1/2 antiferromagnetic chains

    Full text link
    Recent experiments of the quasi-one-dimensional spin-1/2 antiferromagnet Copper Benzoate established the existence of a magnetic field induced gap. The observed neutron scattering intensity exhibits resolution limited peaks at both the antiferromagnetic wave number and at incommensurate wave numbers related to the applied magnetic field. We determine the ratio of spectral weights of these peaks within the framework of a low-energy effective field theory description of the problem.Comment: 5 pages, 3figure

    Algebraic Bethe Ansatz for Integrable Extended Hubbard Models Arising from Supersymmetric Group Solutions

    Full text link
    Integrable extended Hubbard models arising from symmetric group solutions are examined in the framework of the graded Quantum Inverse Scattering Method. The Bethe ansatz equations for all these models are derived by using the algebraic Bethe ansatz method.Comment: 15 pages, RevTex, No figures, to be published in J. Phys.

    Exact Spectral Gaps of the Asymmetric Exclusion Process with Open Boundaries

    Full text link
    We derive the Bethe ansatz equations describing the complete spectrum of the transition matrix of the partially asymmetric exclusion process with the most general open boundary conditions. By analysing these equations in detail for the cases of totally asymmetric and symmetric diffusion, we calculate the finite-size scaling of the spectral gap, which characterizes the approach to stationarity at large times. In the totally asymmetric case we observe boundary induced crossovers between massive, diffusive and KPZ scaling regimes. We further study higher excitations, and demonstrate the absence of oscillatory behaviour at large times on the ``coexistence line'', which separates the massive low and high density phases. In the maximum current phase, oscillations are present on the KPZ scale tL3/2t\propto L^{-3/2}. While independent of the boundary parameters, the spectral gap as well as the oscillation frequency in the maximum current phase have different values compared to the totally asymmetric exclusion process with periodic boundary conditions. We discuss a possible interpretation of our results in terms of an effective domain wall theory.Comment: 42 pages, 25 figures; added appendix and minor correction
    corecore