1,164 research outputs found

    Probing RNA Structure with Chemical Reagents and Enzymes

    Full text link
    This unit provides thorough coverage of the most useful chemical and enzyme probes that can be used to examine RNA secondary and tertiary structure. Footprinting methods are presented using dimethyl sulfate, diethyl pyrocarbonate, ethylnitrosourea, kethoxal, CMCT, and nucleases. For chemical probes, both strand scission and primer extension detection protocols are included.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143733/1/cpnc0601.pd

    Broadening the mission of an RNA enzyme

    Full text link
    The “RNA World” hypothesis suggests that life developed from RNA enzymes termed ribozymes, which carry out reactions without assistance from proteins. Ribonuclease (RNase) P is one ribozyme that appears to have adapted these origins to modern cellular life by adding protein to the RNA core in order to broaden the potential functions. This RNA-protein complex plays diverse roles in processing RNA, but its best-understood reaction is pre-tRNA maturation, resulting in mature 5' ends of tRNAs. The core catalytic activity resides in the RNA subunit of almost all RNase P enzymes but broader substrate tolerance is required for recognizing not only the diverse sequences of tRNAs, but also additional cellular RNA substrates. This broader substrate tolerance is provided by the addition of protein to the RNA core and allows RNase P to selectively recognize different RNAs, and possibly ribonucleoprotein (RNP) substrates. Thus, increased protein content correlated with evolution from bacteria to eukaryotes has further enhanced substrate potential enabling the enzyme to function in a complex cellular environment. J. Cell. Biochem. 108: 1244–1251, 2009. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64531/1/22367_ftp.pd

    Spatial organization of genes as a component of regulated expression

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/85743/1/Pai-Engelke-2010.pd

    Cellular dynamics of tRNAs and their genes

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/85744/1/Hopper-Engelke-2010.pd

    Silencing near tRNA genes requires nuceolar localization

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/85734/1/Wang-Engelke-2005.pd

    Prediction and verification of mouse tRNA gene families

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/85741/1/Coughlin-Babck-Engelke-2009nihms-109486[1].pd

    Evidence for an RNA-based catalytic mechanism in eukaryotic nuclear ribonuclease P.

    Get PDF
    This is the published version. Copyright 2000 by the RNA Society.Ribonuclease P is the enzyme responsible for removing the 5'-leader segment of precursor transfer RNAs in all organisms. All eukaryotic nuclear RNase Ps are ribonucleoproteins in which multiple protein components and a single RNA species are required for activity in vitro as well as in vivo. It is not known, however, which subunits participate directly in phosphodiester-bond hydrolysis. The RNA subunit of nuclear RNase P is evolutionarily related to its catalytically active bacterial counterpart, prompting speculation that in eukaryotes the RNA may be the catalytic component. In the bacterial RNase P reaction, Mg(II) is required to coordinate the nonbridging phosphodiester oxygen(s) of the scissile bond. As a consequence, bacterial RNase P cannot cleave pre-tRNA in which the pro-Rp nonbridging oxygen of the scissile bond is replaced by sulfur. In contrast, the RNase P reaction in plant chloroplasts is catalyzed by a protein enzyme whose mechanism does not involve Mg(II) coordinated by the pro-Rp oxygen. To determine whether the mechanism of nuclear RNase P resembles more closely an RNA- or a protein-catalyzed reaction, we analyzed the ability of Saccharomyces cerevisiae nuclear RNase P to cleave pre-tRNA containing a sulfur substitution of the pro-Rp oxygen at the cleavage site. Sulfur substitution at this position prohibits correct cleavage of pre-tRNA. Cleavage by eukaryotic RNase P thus depends on the presence of a thio-sensitive ligand to the pro-Rp oxygen of the scissile bond, and is consistent with a common, RNA-based mechanism for the bacterial and eukaryal enzymes

    Intra-oral compartment pressures: a biofunctional model and experimental measurements under different conditions of posture

    Get PDF
    Oral posture is considered to have a major influence on the development and reoccurrence of malocclusion. A biofunctional model was tested with the null hypotheses that (1) there are no significant differences between pressures during different oral functions and (2) between pressure measurements in different oral compartments in order to substantiate various postural conditions at rest by intra-oral pressure dynamics. Atmospheric pressure monitoring was simultaneously carried out with a digital manometer in the vestibular inter-occlusal space (IOS) and at the palatal vault (sub-palatal space, SPS). Twenty subjects with normal occlusion were evaluated during the open-mouth condition (OC), gently closed lips (semi-open compartment condition, SC), with closed compartments after the generation of a negative pressure (CCN) and swallowing (SW). Pressure curve characteristics were compared between the different measurement phases (OC, SC, CCN, SW) as well as between the two compartments (IOS, SPS) using analysis of variance and Wilcoxon matched-pairs tests adopting a significance level of α = 0.05. Both null hypotheses were rejected. Average pressures (IOS, SPS) in the experimental phases were 0.0, −0.08 (OC); −0.16, −1.0 (SC); −48.79, −81.86 (CCN); and −29.25, −62.51 (SW) mbar. CCN plateau and peak characteristics significantly differed between the two compartments SPS and IOS. These results indicate the formation of two different intra-oral functional anatomical compartments which provide a deeper understanding of orofacial biofunctions and explain previous observations of negative intra-oral pressures at rest
    • 

    corecore