3,937 research outputs found

    Macrophages in endocrine glands, with emphasis on pancreatic islets

    Get PDF
    ABSTRACT We review here the macrophages found in endocrine tissues, placing emphasis on those residing in the islets of Langerhans of the pancreas. The islets represent the endocrine organ where macrophages have been examined in great detail and where our own studies and experience have been directed.</jats:p

    Minimum Number of k-Cliques in Graphs with Bounded Independence Number

    Full text link
    Erdos asked in 1962 about the value of f(n,k,l), the minimum number of k-cliques in a graph of order n and independence number less than l. The case (k,l)=(3,3) was solved by Lorden. Here we solve the problem (for all large n) when (k,l) is (3,4), (3,5), (3,6), (3,7), (4,3), (5,3), (6,3), and (7,3). Independently, Das, Huang, Ma, Naves, and Sudakov did the cases (k,l)=(3,4) and (4,3).Comment: 25 pages. v4: Three new solved cases added: (3,5), (3,6), (3,7). All calculations are done with Version 2.0 of Flagmatic no

    DC Conductance of Molecular Wires

    Full text link
    Inspired by the work of Kamenev and Kohn, we present a general discussion of the two-terminal dc conductance of molecular devices within the framework of Time Dependent Current-Density Functional Theory. We derive a formally exact expression for the adiabatic conductance and we discuss the dynamical corrections. For junctions made of long molecular chains that can be either metallic or insulating, we derive the exact asymptotic behavior of the adiabatic conductance as a function of the chain's length. Our results follow from the analytic structure of the bands of a periodic molecular chain and a compact expression for the Green's functions. In the case of an insulating chain, not only do we obtain the exponentially decaying factors, but also the corresponding amplitudes, which depend very sensitively on the electronic properties of the contacts. We illustrate the theory by a numerical study of a simple insulating structure connected to two metallic jellium leads.Comment: 15 pgs and 9 figure

    Cosmological Horizon Modes and Linear Response in de Sitter Spacetime

    Get PDF
    Linearized fluctuations of quantized matter fields and the spacetime geometry around de Sitter space are considered in the case that the matter fields are conformally invariant. Taking the unperturbed state of the matter to be the de Sitter invariant Bunch-Davies state, the linear variation of the stress tensor about its self-consistent mean value serves as a source for fluctuations in the geometry through the semi-classical Einstein equations. This linear response framework is used to investigate both the importance of quantum backreaction and the validity of the semi-classical approximation in cosmology. The full variation of the stress tensor, delta T^a_b contains two kinds of terms: (1) those that depend explicitly upon the linearized metric variation delta g_{cd} through the [T^a_b, T^{cd}] causal response function; and (2) state dependent variations, independent of delta g_{cd}. For perturbations of the first kind, the criterion for the validity of the semi-classical approximation in de Sitter space is satisfied for fluctuations on all scales well below the Planck scale. The perturbations of the second kind contain additional massless scalar degrees of freedom associated with changes of state of the fields on the cosmological horizon scale. These scalar degrees of freedom arise necessarily from the local auxiliary field form of the effective action associated with the trace anomaly, are potentially large on the horizon scale, and therefore can lead to substantial non-linear quantum backreaction effects in cosmology.Comment: 62 pages, 4 figures v.2 is amended to match the published version in Phys. Rev. D: Eqs. (6.13)-(6.14) for the quadratic action added, two references added, several minor typos correcte

    Verification of time-reversibility requirementfor systems satisfying the Evans-Searles fluctuation theorem

    Get PDF
    The Evans-Searles fluctuation theorem (ESFT) has been shown to be applicable in the near- and far-from-equilibrium regimes for systems with both constant and time-dependent external fields. The derivations of the ESFT have assumed that the external field has a definite parity under a time-reversal mapping. In the present paper, we confirm that the time-reversibility of the system dynamics is a necessary condition for the ESFT to hold. The manner in which the ESFT fails for systems that are not time-reversible is presented, and results are shown which demonstrate that systems which fail to satisfy the ESFT may still satisfy the Crooks relation (CR)
    • …
    corecore