7,410 research outputs found

    Angular-planar CMB power spectrum

    Full text link
    Gaussianity and statistical isotropy of the Universe are modern cosmology's minimal set of hypotheses. In this work we introduce a new statistical test to detect observational deviations from this minimal set. By defining the temperature correlation function over the whole celestial sphere, we are able to independently quantify both angular and planar dependence (modulations) of the CMB temperature power spectrum over different slices of this sphere. Given that planar dependence leads to further modulations of the usual angular power spectrum ClC_l, this test can potentially reveal richer structures in the morphology of the primordial temperature field. We have also constructed an unbiased estimator for this angular-planar power spectrum which naturally generalizes the estimator for the usual ClC_l's. With the help of a chi-square analysis, we have used this estimator to search for observational deviations of statistical isotropy in WMAP's 5 year release data set (ILC5), where we found only slight anomalies on the angular scales l=7l=7 and l=8l=8. Since this angular-planar statistic is model-independent, it is ideal to employ in searches of statistical anisotropy (e.g., contaminations from the galactic plane) and to characterize non-Gaussianities.Comment: Replaced to match the published version. Journal-ref: Phys.Rev. D80 063525 (2009

    Noncommuting spherical coordinates

    Get PDF
    Restricting the states of a charged particle to the lowest Landau level introduces a noncommutativity between Cartesian coordinate operators. This idea is extended to the motion of a charged particle on a sphere in the presence of a magnetic monopole. Restricting the dynamics to the lowest energy level results in noncommutativity for angular variables and to a definition of a noncommuting spherical product. The values of the commutators of various angular variables are not arbitrary but are restricted by the discrete magnitude of the magnetic monopole charge. An algebra, isomorphic to angular momentum, appears. This algebra is used to define a spherical star product. Solutions are obtained for dynamics in the presence of additional angular dependent potentials.Comment: 5 pages, RevTex4 fil

    Thermodynamic depressions within cavities and cavitation inception in liquid hydrogen and liquid nitrogen Final report, 15 Jul. 1964 - 15 Dec. 1967

    Get PDF
    Thermodynamic depressions within cavities and cavitation inception in liquid hydrogen and nitrogen in transparent plastic venturi tube

    Implementation of optimal phase-covariant cloning machines

    Full text link
    The optimal phase covariant cloning machine (PQCM) broadcasts the information associated to an input qubit into a multi-qubit systems, exploiting a partial a-priori knowledge of the input state. This additional a priori information leads to a higher fidelity than for the universal cloning. The present article first analyzes different experimental schemes to implement the 1->3 PQCM. The method is then generalized to any 1->M machine for odd value of M by a theoretical approach based on the general angular momentum formalism. Finally different experimental schemes based either on linear or non-linear methods and valid for single photon polarization encoded qubits are discussed.Comment: 7 pages, 3 figure

    SU(N) Wigner-Racah algebra for the matrix of second moments of embedded Gaussian unitary ensemble of random matrices

    Full text link
    Recently Pluhar and Weidenmueller [Ann. Phys. (N.Y.) Vol 297, 344 (2002)] showed that the eigenvectors of the matrix of second moments of embedded Gaussian unitary ensemble of random matrices generated by k-body interactions (EGUE(k)) for m fermions in N single particle states are SU(N) Wigner coefficients and derived also an expression for the eigenvalues. Going beyond this work, we will show that the eigenvalues of this matrix are square of a SU(N) Racah coefficient and thus the matrix of second moments of EGUE(k) is solved completely by SU(N) Wigner-Racah algebra.Comment: 16 page

    Touch as the act of signification: Naming as a key design concept for gesturally intuitive interactive space

    Full text link
    The act of naming, where sign and the signified are coupled as an act of touching, establishes the foundations for the meaningful use of language. The computer, a language machine, possesses the capacity to input sensory data from the physical environment where signification occurs. To design a computationally extended sensory environment with intuitive gestural interaction will necessarily then have touch as a foundational factor. The universal element in such systems is language; the specific is the context of place, a space where the significating action of touch occurs

    N=4 Supersymmetric Yang-Mills on S^3 in Plane Wave Matrix Model at Finite Temperature

    Full text link
    We investigate the large N reduced model of gauge theory on a curved spacetime through the plane wave matrix model. We formally derive the action of the N=4 supersymmetric Yang-Mills theory on R \times S^3 from the plane wave matrix model in the large N limit. Furthermore, we evaluate the effective action of the plane wave matrix model up to the two-loop level at finite temperature. We find that the effective action is consistent with the free energy of the N=4 supersymmetric Yang-Mills theory on S^3 at high temperature limit where the planar contributions dominate. We conclude that the plane wave matrix model can be used as a large N reduced model to investigate nonperturbative aspects of the N=4 supersymmetric Yang-Mills theory on R \times S^3.Comment: 31pages: added comments and reference

    Optimal measurement precision of a nonlinear interferometer

    Full text link
    We study the best attainable measurement precision when a double-well trap with bosons inside acts as an interferometer to measure the energy difference of the atoms on the two sides of the trap. We introduce time independent perturbation theory as the main tool in both analytical arguments and numerical computations. Nonlinearity from atom-atom interactions will not indirectly allow the interferometer to beat the Heisenberg limit, but in many regimes of the operation the Heisenberg limit scaling of measurement precision is preserved in spite of added tunneling of the atoms and atom-atom interactions, often even with the optimal prefactor.Comment: very close to published versio

    Rotational States of Magnetic Molecules

    Full text link
    We study a magnetic molecule that exhibits spin tunneling and is free to rotate about its anisotropy axis. Exact low-energy eigenstates of the molecule that are superpositions of spin and rotational states are obtained. We show that parameter α=2(S)2/(IΔ)\alpha = 2(\hbar S)^2/(I\Delta) determines the ground state of the molecule. Here S\hbar S is the spin, II is the moment of inertia, and Δ\Delta is the tunnel splitting. The magnetic moment of the molecule is zero at ααc\alpha \alpha_c. At α\alpha \to \infty the spin of the molecule localizes in one of the directions along the anisotropy axis.Comment: 4 pages, 3 figure

    Comparison of mass limiting two-phase flow in a straight tube and in a nozzle

    Get PDF
    Mass-limiting and near mass-limiting two-phase flow in straight tube and nozzle of refrigerant flow loop syste
    corecore