174 research outputs found
Annual Survey of Virginia Law: Health Law
During the past year, the Commonwealth of Virginia has experienced numerous developments in health law on all three major legal fronts-legislative, judicial, and administrative law. These developments have covered a range of health law topics, including everything from revisions to the public certificate of need process for health care facilities and the regulation of body-piercing of minors on the legislative front, to key decisions regarding the scope of the Virginia Birth-Related Neurological Injury Compensation Act and the Health Care Decisions Act on the judicial front, to action on the regulatory front regarding independent external appeals ofhealth plan denials and hospice care under the Medicaid program. This article offers a summary of some of the most significant developments in health law in each of these three legal arenas during the past year
An integrated approach to pathogen transmission via environmental reservoirs
To mitigate the effects of zoonotic diseases on human and animal populations,
it is critical to understand what factors alter transmission dynamics. Here we
assess the risk of exposure to lethal concentrations of the anthrax bacterium,
Bacillus anthracis, for grazing animals in a natural system over time through
different transmission mechanisms. We follow pathogen concentrations at
anthrax carcass sites and waterholes for five years and estimate infection
risk as a function of grass, soil or water intake, age of carcass sites, and
the exposure required for a lethal infection. Grazing, not drinking, seems the
dominant transmission route, and transmission is more probable from grazing at
carcass sites 1–2 years of age. Unlike most studies of virulent pathogens that
are conducted under controlled conditions for extrapolation to real
situations, we evaluate exposure risk under field conditions to estimate the
probability of a lethal dose, showing that not all reservoirs with detectable
pathogens are significant transmission pathways
Bacillus anthracis in China and its relationship to worldwide lineages
<p>Abstract</p> <p>Background</p> <p>The global pattern of distribution of 1033 <it>B. anthracis </it>isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP). These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages) have become widely dispersed throughout the world and form the basis for the geographical disposition of "modern" anthrax. An archival collection of 191 different <it>B. anthracis </it>isolates from China provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP) and multiple locus VNTR analysis (MLVA) typing has been used to examine this archival collection of isolates.</p> <p>Results</p> <p>The canSNP study indicates that there are 5 different sub-lineages/sub-groups in China out of 12 previously described world-wide canSNP genotypes. Three of these canSNP genotypes were only found in the western-most province of China, Xinjiang. These genotypes were A.Br.008/009, a sub-group that is spread across most of Europe and Asia; A.Br.Aust 94, a sub-lineage that is present in Europe and India, and A.Br.Vollum, a lineage that is also present in Europe. The remaining two canSNP genotypes are spread across the whole of China and belong to sub-group A.Br.001/002 and the A.Br.Ames sub-lineage, two closely related genotypes. MLVA typing adds resolution to the isolates in each canSNP genotype and diversity indices for the A.Br.008/009 and A.Br.001/002 sub-groups suggest that these represent older and established clades in China.</p> <p>Conclusion</p> <p><it>B. anthracis </it>isolates were recovered from three canSNP sub-groups (A.Br.008/009, A.Br.Aust94, and A.Br.Vollum) in the western most portion of the large Chinese province of Xinjiang. The city of Kashi in this province appears to have served as a crossroads for not only trade but the movement of diseases such as anthrax along the ancient "silk road". Phylogenetic inference also suggests that the A.Br.Ames sub-lineage, first identified in the original Ames strain isolated from Jim Hogg County, TX, is descended from the A.Br.001/002 sub-group that has a major presence in most of China. These results suggest a genetic discontinuity between the younger Ames sub-lineage in Texas and the large Western North American sub-lineage spread across central Canada and the Dakotas.</p
Global Genetic Population Structure of Bacillus anthracis
Anthrax, caused by the bacterium Bacillus anthracis, is a disease of historical and current importance that is found throughout the world. The basis of its historical transmission is anecdotal and its true global population structure has remained largely cryptic. Seven diverse B. anthracis strains were whole-genome sequenced to identify rare single nucleotide polymorphisms (SNPs), followed by phylogenetic reconstruction of these characters onto an evolutionary model. This analysis identified SNPs that define the major clonal lineages within the species. These SNPs, in concert with 15 variable number tandem repeat (VNTR) markers, were used to subtype a collection of 1,033 B. anthracis isolates from 42 countries to create an extensive genotype data set. These analyses subdivided the isolates into three previously recognized major lineages (A, B, and C), with further subdivision into 12 clonal sub-lineages or sub-groups and, finally, 221 unique MLVA15 genotypes. This rare genomic variation was used to document the evolutionary progression of B. anthracis and to establish global patterns of diversity. Isolates in the A lineage are widely dispersed globally, whereas the B and C lineages occur on more restricted spatial scales. Molecular clock models based upon genome-wide synonymous substitutions indicate there was a massive radiation of the A lineage that occurred in the mid-Holocene (3,064–6,127 ybp). On more recent temporal scales, the global population structure of B. anthracis reflects colonial-era importation of specific genotypes from the Old World into the New World, as well as the repeated industrial importation of diverse genotypes into developed countries via spore-contaminated animal products. These findings indicate humans have played an important role in the evolution of anthrax by increasing the proliferation and dispersal of this now global disease. Finally, the value of global genotypic analysis for investigating bioterrorist-mediated outbreaks of anthrax is demonstrated
Postepidemic Analysis of Rift Valley Fever Virus Transmission in Northeastern Kenya: A Village Cohort Study
RVFV infection causes significant disease in both human and animal populations, resulting in significant agricultural, economic and public health consequences. We conducted a cohort study on residents of a high-risk area to measure human anti-RVFV seroprevalence, to identify risk factors, and to estimate the durability of prior RVFV immunity. One hundred two individuals tested for RVFV exposure before the 2006–2007 RVF outbreak were restudied to determine interval anti-RVFV seroconversion and persistence of humoral immunity since 2006. Ninety-two additional subjects were enrolled from randomly selected households to help identify risk factors for current seropositivity. Seroprevalence in the region was high (23%). 1/85 at-risk individuals restudied in the follow-up cohort had seroconverted since early 2006. 29% of newly tested individuals were seropositive. After adjustment in multivariable logistic models, age, village, and drinking raw milk were significantly associated with RVFV seropositivity. Visual impairment (defined as ≤20/80) was much more likely in the RVFV-seropositive group. Among those with previous exposure, RVFV titers remained at protective levels (>1∶40) for more than 3 years. This study highlights the high seroprevalence among Northeastern Kenyans and the ongoing surge in seroprevalence with each RVF outbreak
High Seroprevalence of Rift Valley Fever and Evidence for Endemic Circulation in Mbeya Region, Tanzania, in a Cross-Sectional Study
We describe a high seropositivity rate for Rift Valley fever virus, in up to 29.3% of tested individuals from the shore of Lake Malawi in southwestern Tanzania, and much lower rates from areas distant to the lake. Rift Valley fever disease or outbreaks have not been observed there in the past, which suggests that the virus is circulating under locally favorable conditions and is either a non-pathogenic strain, or that occasional occurrence of disease is missed. We were able to identify a low socio-economic status and cattle ownership as possible socio-economic risk factors for an individual to be seropositive. Environmental risk factors associated with seropositivity include dense vegetation, and ambient land surface temperatures which may be important for breeding success of the mosquitoes which transmit Rift Valley fever, and for efficient multiplication of the virus in the mosquito. Low elevation of the home, and proximity to Lake Malawi probably lead to abundant surface water collections, which serve as breeding places for mosquitoes. These findings will inform patient care in the areas close to Lake Malawi, and may help to design models which predict low-level virus circulation
Rift Valley Fever Virus Seroprevalence in Human Rural Populations of Gabon
Rift Valley fever (RVF) is a disease transmitted by a mosquito bite (Aedes). Humans can also be infected through direct contact with blood (aerosols) or tissues (placenta, stillborn) of infected animals. Although severe clinical cases can be observed, infection with RVF virus (RVFV) in humans in most cases causes a febrile illness without serious symptoms. In small ruminants RVFV mainly causes abortion and neonatal death. RVFV distribution has been poorly investigated in Central Africa. We conducted a large scale serological survey of RVF antibodies in rural populations in Gabon, involving 4,323 individuals from 212 randomly selected villages. The results showed an overall RVFV prevalence of 3.3%, with values of 2.9% in the forested zones, 2.2% in savannas and 8.3% in the lakes region. These findings strongly suggest for the first time the wide circulation of Rift valley fever virus in Gabon and the possible existence of a sylvan cycle of RVF virus in this country. The serological higher prevalence in the lake region suggests that this region is likely to have particular ecological conditions, especially mosquito vector species, favoring the circulation of this virus. In Gabon, human cases of RVF may occur but are either misdiagnosed or not reported
The Majorana Neutrinoless Double-Beta Decay Experiment
The proposed Majorana double-beta decay experiment is based on an array of
segmented intrinsic Ge detectors with a total mass of 500 kg of Ge isotopically
enriched to 86% in 76Ge. A discussion is given of background reduction by:
material selection, detector segmentation, pulse shape analysis, and
electro-formation of copper parts and granularity. Predictions of the
experimental sensitivity are given. For an experimental running time of 10
years over the construction and operation of Majorana, a half-life sensitivity
of ~4x10^27 y (neutrinoless) is predicted. This corresponds to an effective
Majorana mass of the electron neutrino of ~0.03-0.04 eV, according to recent
QRPA and RQRPA matrix element calculations.Comment: 10 pages, 7 figure
- …