15,997 research outputs found
Arkansas Wheat Cultivar Performance Tests 2013-2014
Wheat cultivar performance tests are conducted each year in Arkansas by the Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and/or marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers
Arkansas Wheat Cultivar Performance Tests 2018-2019
Wheat cultivar performance tests are conducted each year in Ark- ansas by the University of Arkansas System Division of Agriculture’s Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers. The tests are conducted at the Northeast Research and Extension Center at Keiser, the Vegetable Substation near Kibler, the Lon Mann Cotton Research Station near Marianna, the Newport Extension Center near Newport, the Rohwer Research Station near Rohwer, the Pine Tree Research Station near Colt, and the Hope Research and Extension Center. In addition, entries are evaluated in a stripe rust (Puccinia striiformis f.sp. tritici) inoculated nursery in Fayetteville and a Fusarium head blight (FHB) inoculated nursery in Newport and Fayetteville. Specific location and cultural practice information accompany each table
Arkansas Wheat Cultivar Performance Tests 2016-2017
Wheat cultivar performance tests are conducted each year in Arkansas by the University of Arkansas System Division of Agriculture’s Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers
Arkansas Wheat Cultivar Performance Tests 2011-2012
Wheat cultivar performance tests are conducted each year in Arkansas by the Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and/or marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers
Arkansas Wheat Cultivar Performance Tests 2010-2011
Wheat cultivar performance tests are conducted each year in Arkansas by the Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and/or marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers
MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission
A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band
An on-board near-optimal climb-dash energy management
On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path
Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size
We compute the absorption efficiency (Qabs) of forsterite using the discrete
dipole approximation (DDA) in order to identify and describe what
characteristics of crystal grain shape and size are important to the shape,
peak location, and relative strength of spectral features in the 8-40 {\mu}m
wavelength range. Using the DDSCAT code, we compute Qabs for non-spherical
polyhedral grain shapes with a_eff = 0.1 {\mu}m. The shape characteristics
identified are: 1) elongation/reduction along one of three crystallographic
axes; 2) asymmetry, such that all three crystallographic axes are of different
lengths; and 3) the presence of crystalline faces that are not parallel to a
specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids.
Elongation/reduction dominates the locations and shapes of spectral features
near 10, 11, 16, 23.5, 27, and 33.5 {\mu}m, while asymmetry and tips are
secondary shape effects. Increasing grain sizes (0.1-1.0 {\mu}m) shifts the 10,
11 {\mu}m features systematically towards longer wavelengths and relative to
the 11 {\mu}m feature increases the strengths and slightly broadens the longer
wavelength features. Seven spectral shape classes are established for
crystallographic a-, b-, and c-axes and include columnar and platelet shapes
plus non-elongated or equant grain shapes. The spectral shape classes and the
effects of grain size have practical application in identifying or excluding
columnar, platelet or equant forsterite grain shapes in astrophysical environs.
Identification of the shape characteristics of forsterite from 8-40 {\mu}m
spectra provides a potential means to probe the temperatures at which
forsterite formed.Comment: 55 pages, 15 figure
Climb-dash real-time calculations
On-board rear-optimal climb-dash energy management, optimal symmetric flight with an intermediate vehicle model, and energy states are presented
Oxygen-related traps in pentacene thin films: Energetic position and implications for transistor performance
We studied the influence of oxygen on the electronic trap states in a
pentacene thin film. This was done by carrying out gated four-terminal
measurements on thin-film transistors as a function of temperature and without
ever exposing the samples to ambient air. Photooxidation of pentacene is shown
to lead to a peak of trap states centered at 0.28 eV from the mobility edge,
with trap densities of the order of 10(18) cm(-3). These trap states need to be
occupied at first and cause a reduction in the number of free carriers, i.e. a
consistent shift of the density of free holes as a function of gate voltage.
Moreover, the exposure to oxygen reduces the mobility of the charge carriers
above the mobility edge. We correlate the change of these transport parameters
with the change of the essential device parameters, i.e. subthreshold
performance and effective field-effect mobility. This study supports the
assumption of a mobility edge for charge transport, and contributes to a
detailed understanding of an important degradation mechanism of organic
field-effect transistors. Deep traps in an organic field-effect transistor
reduce the effective field-effect mobility by reducing the number of free
carriers and their mobility above the mobility edge.Comment: 13 pages, 14 figures, to be published in Phys. Rev.
- …