275 research outputs found
Color transparency in deeply inelastic diffraction
We suggest a simple physical picture for the diffractive parton distributions
that appear in diffractive deeply inelastic scattering. In this picture,
partons impinging on the proton can have any transverse separation, but only
when the separation is small can they penetrate the proton without breaking it
up. By comparing the predictions from this picture with the diffractive data
from HERA, we determine rough values for the small separations that dominate
the diffraction process.Comment: 10 pages, 2 figures; v2: citations added, two comments revised and
expanded, results unchange
TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions
Transverse-momentum-dependent distributions (TMDs) are central in high-energy
physics from both theoretical and phenomenological points of view. In this
manual we introduce the library, TMDlib, of fits and parameterisations for
transverse-momentum-dependent parton distribution functions (TMD PDFs) and
fragmentation functions (TMD FFs) together with an online plotting tool,
TMDplotter. We provide a description of the program components and of the
different physical frameworks the user can access via the available
parameterisations.Comment: version 2, referring to TMDlib 1.0.2 - comments and references adde
Gamma(*)Gamma(*) reaction at high energies
The energy available for gamma(*)gamma(*) physics at LEP2 is opening a new
window on the study of diffractive phenomena, both non-perturbative and
perturbative. We discuss some of the uncertainties and problems connected with
the experimental measurements and their interpretation.Comment: 6 pages, 6 figures, submitted to proceedings of the Durham Collider
Workshop, 22-26 September 199
Fully-Unintegrated Parton Distribution and Fragmentation Functions at Perturbative k_T
We define and study the properties of generalized beam functions (BFs) and
fragmenting jet functions (FJFs), which are fully-unintegrated parton
distribution functions (PDFs) and fragmentation functions (FFs) for
perturbative k_T. We calculate at one loop the coefficients for matching them
onto standard PDFs and FFs, correcting previous results for the BFs in the
literature. Technical subtleties when measuring transverse momentum in
dimensional regularization are clarified, and this enables us to renormalize in
momentum space. Generalized BFs describe the distribution in the full
four-momentum k_mu of a colliding parton taken out of an initial-state hadron,
and therefore characterize the collinear initial-state radiation. We illustrate
their importance through a factorization theorem for pp -> l^+ l^- + 0 jets,
where the transverse momentum of the lepton pair is measured. Generalized FJFs
are relevant for the analysis of semi-inclusive processes where the full
momentum of a hadron, fragmenting from a jet with constrained invariant mass,
is measured. Their significance is shown for the example of e^+ e^- -> dijet+h,
where the perpendicular momentum of the fragmenting hadron with respect to the
thrust axis is measured.Comment: Journal versio
kt - factorization and CCFM - the solution for describing the hadronic final states - everywhere ?
The basic ideas of kt-factorization and CCFM parton evolution is discussed.
The unintegrated gluon densities, obtained from CCFM fits to the proton
structure function data at HERA are used to predict hadronic final state cross
sections like jet production at HERA, but also comparisons with recent
measurements of heavy quark production at the Tevatron are presented. Finally,
the kt-factorization approach is applied to Higgs production at high energy
hadron hadron colliders and the transverse momentum spectrum of Higgs
production at the LHC is calculated.Comment: to be published in MPLA, replaced with new reference
Yukawa potentials in systems with partial periodic boundary conditions I : Ewald sums for quasi-two dimensional systems
Yukawa potentials are often used as effective potentials for systems as
colloids, plasmas, etc. When the Debye screening length is large, the Yukawa
potential tends to the non-screened Coulomb potential ; in this small screening
limit, or Coulomb limit, the potential is long ranged. As it is well known in
computer simulation, a simple truncation of the long ranged potential and the
minimum image convention are insufficient to obtain accurate numerical data on
systems. The Ewald method for bulk systems, i.e. with periodic boundary
conditions in all three directions of the space, has already been derived for
Yukawa potential [cf. Y., Rosenfeld, {\it Mol. Phys.}, \bm{88}, 1357, (1996)
and G., Salin and J.-M., Caillol, {\it J. Chem. Phys.}, \bm{113}, 10459,
(2000)], but for systems with partial periodic boundary conditions, the Ewald
sums have only recently been obtained [M., Mazars, {\it J. Chem. Phys.}, {\bf
126}, 056101 (2007)]. In this paper, we provide a closed derivation of the
Ewald sums for Yukawa potentials in systems with periodic boundary conditions
in only two directions and for any value of the Debye length. A special
attention is paid to the Coulomb limit and its relation with the
electroneutrality of systems.Comment: 40 pages, 5 figures and 4 table
Color coherent phenomena on nuclei and the QCD evolution equation
We review the phenomenon of color coherence in quantum chromodynamics (QCD),
its implications for hard and soft processes with nuclei, and its experimental
manifestations. The relation of factorization theorems in QCD with color
coherence phenomena in deep inelastic scattering (DIS) and color coherence
phenomena in hard exclusive processes is emphasized. Analyzing numerically the
QCD evolution equation for conventional and skewed parton densities in nuclei,
we study the onset of generalized color transparency and nuclear shadowing of
the sea quark and gluon distributions in nuclei as well as related phenomena.
Such novel results as the dependence of the effective coherence length on
and general trends of the QCD evolution are discussed. The limits of the
applicability of the QCD evolution equation at small Bjorken are estimated
by comparing the inelastic quark-antiquark- and two gluon-nucleon (nucleus)
cross sections, calculated within the DGLAP approximation, with the dynamical
boundaries, which follow from the unitarity of the matrix for purely QCD
interactions. We also demonstrate that principles of color coherence play an
important role in the processes of soft diffraction off nuclei.Comment: 58 pages, 19 figures, Revtex. Minor editor's changes, final version
published in J.Phys. G27 (2001) R23-6
The QCD description of diffractive processes
We review the application of perturbative QCD to diffractive processes. We
introduce the two gluon exchange model to describe diffractive qq(bar) and
qq(bar)g production in deep inelastic scattering. We study the triple Regge
limit and briefly consider multiple gluon exchange. We discuss diffractive
vector meson production at HERA both at t = 0 and large |t|. We demonstrate the
non-factorization of diffractive processes at hadron colliders.Comment: 39 pages, 14 figures, LaTeX, new references added and some discussion
clarifie
- …