324,674 research outputs found

    A new comparison between solid-state thermionics and thermoelectrics

    Get PDF
    It is shown that equations for electrical current in solid-state thermionic and thermoelectric devices converge for devices with a width equal to the mean free path of electrons, yielding a common expression for intensive electronic efficiency in the two types of devices. This result is used to demonstrate that the materials parameters for thermionic and thermoelectric devices are equal, rather than differing by a multiplicative factor as previously thought

    Time Variations in Elemental Abundances in Solar Energetic Particle Events

    Get PDF
    The Solar Isotope Spectrometer (SIS) on-board the Advanced Composition Explorer has a large collection power and high telemetry rate, making it possible to study elemental abundances in large solar energetic particle (SEP) events as a function of time. Results have now been obtained for more than 25 such events. Understanding the causes of these variations is key to obtaining reliable solar elemental abundances and to understanding solar acceleration processes. Such variations have been previously attributed to two models: (1) a mixture of an initial impulsive phase having enhanced heavy element abundances with a longer gradual phase with coronal abundances and (2) rigidity dependent escape from CME-driven shocks through plasma waves generated by wave-particle interactions. In this second model the injected abundances are assumed to be coronal. Both these models can be expected to depend upon solar longitude since impulsive events are associated with flares at longitudes well-connected magnetically to the observer, and shock properties and connection of the observer to the shock are also longitude dependent. We present results on temporal variations from event to event and within events and show that they appear to have a longitude dependence. We show that the events which have been well-explained by model (2) tend to be near central meridian or the west limb. In addition, we show that there are events with little time variation and heavy element enhancements similar to those of impulsive events. These events seem to be better explained by model (1) with only an impulsive phase

    A time-domain fourth-order-convergent numerical algorithm to integrate black hole perturbations in the extreme-mass-ratio limit

    Full text link
    We obtain a fourth order accurate numerical algorithm to integrate the Zerilli and Regge-Wheeler wave equations, describing perturbations of nonrotating black holes, with source terms due to an orbiting particle. Those source terms contain the Dirac's delta and its first derivative. We also re-derive the source of the Zerilli and Regge-Wheeler equations for more convenient definitions of the waveforms, that allow direct metric reconstruction (in the Regge-Wheeler gauge).Comment: 30 pages, 12 figure

    Statistical mechanics of error exponents for error-correcting codes

    Full text link
    Error exponents characterize the exponential decay, when increasing message length, of the probability of error of many error-correcting codes. To tackle the long standing problem of computing them exactly, we introduce a general, thermodynamic, formalism that we illustrate with maximum-likelihood decoding of low-density parity-check (LDPC) codes on the binary erasure channel (BEC) and the binary symmetric channel (BSC). In this formalism, we apply the cavity method for large deviations to derive expressions for both the average and typical error exponents, which differ by the procedure used to select the codes from specified ensembles. When decreasing the noise intensity, we find that two phase transitions take place, at two different levels: a glass to ferromagnetic transition in the space of codewords, and a paramagnetic to glass transition in the space of codes.Comment: 32 pages, 13 figure

    Consistency of the Shannon entropy in quantum experiments

    Full text link
    The consistency of the Shannon entropy, when applied to outcomes of quantum experiments, is analysed. It is shown that the Shannon entropy is fully consistent and its properties are never violated in quantum settings, but attention must be paid to logical and experimental contexts. This last remark is shown to apply regardless of the quantum or classical nature of the experiments.Comment: 12 pages, LaTeX2e/REVTeX4. V5: slightly different than the published versio

    Classical instability in Lovelock gravity

    Full text link
    We introduce a simple method for the investigation of the classical stability of static solutions with a horizon in Lovelock gravity. The method is applicable to the investigation of high angular momentum instabilities, similar to those found by Dotti and Gleiser for Gauss-Bonnet black holes. The method does not require the knowledge of the explicit analytic form of the black hole solution. In this paper we apply our method to a case where the explicit solution is known and show that it identifies correctly the resulting unstable modes.Comment: 13 pages, 2 figure

    Fingerprinting dark energy

    Full text link
    Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar-field models) which is often generically called "dark energy". We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.Comment: 11 pages, 5 figures, minor changes to match published versio
    corecore