49 research outputs found

    Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media

    Get PDF
    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application

    Electrode modification using nanocomposites of electropolymerised cobalt phthalocyanines supported on multiwalled carbon nanotubes

    Get PDF
    A polymer of tetra(4)-(4,6-diaminopyrimidin-2-ylthio) phthalocyaninatocobalt(II) (CoPyPc) has been deposited over a multiwalled carbon nanotube (MWCNT) platform and its electrocatalytic properties investigated side by side with polymerized cobalt tetraamino phthalocyanine (CoTAPc). X-ray photoelectron spectroscopy, scanning electron microscopy and cyclic voltammetry studies were used for characterization of the prepared polymers of cobalt phthalocyanine derivatives and their nanocomposites. L-Cysteine was used as a test analyte for the electrocatalytic activity of the nanocomposites of polymerized cobalt phthalocyanines and multiwalled carbon nanotubes. The electrocatalytic activity of both polymerized cobalt phthalocyanines was found to be superior when polymerization was done on top of MWCNTs compared to bare glassy carbon electrode. A higher sensitivity for L-cysteine detection was obtained on CoTAPc compared to CoPyPc

    Characterization of electrodes modified with nanocomposites of cobalt tetraaminophenoxyphthalocyanine, reduced graphene and multi-walled carbon nanotubes

    No full text
    Glassy carbon electrodes or plates were modified with nanocomposites consisting of cobalt tetraaminophenoxyphthalocyanine (CoTAPhPc), reduced graphene oxide nanosheets (rGONs) and multi-walled carbon nanotubes (MWCNTs). The modified electrodes were characterized using cyclic voltammetry, scanning electrochemical microscopy (SECM) and time-of-flight-secondary ion mass spectrometer (TOF-SIMS). The electrocatalytic activity of the modified electrode was tested for detection of L-cysteine. The presence of CoTAPhPc on sequential layers of MWCNT and rGONs resulted in improved detection currents compared to CoTAPhPc alone or when MWCNT/rGONs are mixed in CoTAPhPc–MWCNT/ rGONs (mix)–glassy carbon electrode (GCE). CoTAPhPc–MWCNT–GCE (without rGONS) showed higher sensitivity toward L-cysteine as compared to the probes incorporating rGONs with a catalytic rate constant of 4.62x104 M-1 s-1 and a detection limit of 30 nM. The presence of rGONs improved the stability of the electrode

    Giant renal Angiomyolipoma masquerading as a Wilms tumor

    No full text
    Renal Angiomyolipoma (AML) is not commonly seen in the pediatric age group other than patients of tuberous sclerosis where in they can have renal AMLs within the first decade with bilateral in involvement. Diagnosis of renal AML can generally be made by the current radiological modalities in the appropriate clinical setting, but it can be mistaken for other tumors when it is large and has low-fat content. Herein we report a case of giant renal AML that was initially misdiagnosed as a Wilms tumor in a 12-year-old girl
    corecore