4,588 research outputs found

    Domain wall theory and non-stationarity in driven flow with exclusion

    Full text link
    We study the dynamical evolution toward steady state of the stochastic non-equilibrium model known as totally asymmetric simple exclusion process, in both uniform and non-uniform (staggered) one-dimensional systems with open boundaries. Domain-wall theory and numerical simulations are used and, where pertinent, their results are compared to existing mean-field predictions and exact solutions where available. For uniform chains we find that the inclusion of fluctuations inherent to the domain-wall formulation plays a crucial role in providing good agreement with simulations, which is severely lacking in the corresponding mean-field predictions. For alternating-bond chains the domain-wall predictions for the features of the phase diagram in the parameter space of injection and ejection rates turn out to be realized only in an incipient and quantitatively approximate way. Nevertheless, significant quantitative agreement can be found between several additional domain-wall theory predictions and numerics.Comment: 12 pages, 12 figures (published version

    Correlation--function distributions at the Nishimori point of two-dimensional Ising spin glasses

    Full text link
    The multicritical behavior at the Nishimori point of two-dimensional Ising spin glasses is investigated by using numerical transfer-matrix methods to calculate probability distributions P(C)P(C) and associated moments of spin-spin correlation functions CC on strips. The angular dependence of the shape of correlation function distributions P(C)P(C) provides a stringent test of how well they obey predictions of conformal invariance; and an even symmetry of (1βˆ’C)P(C)(1-C) P(C) reflects the consequences of the Ising spin-glass gauge (Nishimori) symmetry. We show that conformal invariance is obeyed in its strictest form, and the associated scaling of the moments of the distribution is examined, in order to assess the validity of a recent conjecture on the exact localization of the Nishimori point. Power law divergences of P(C)P(C) are observed near C=1 and C=0, in partial accord with a simple scaling scheme which preserves the gauge symmetry.Comment: Final version to be published in Phys Rev

    Spontaneous Breaking of Lorentz Symmetry and Vertex Operators for Vortices

    Full text link
    We first review the spontaneous Lorentz symmetry breaking in the presence of massless gauge fields and infraparticles. This result was obtained long time ago in the context of rigorious quantum field theory by Frohlich et. al. and reformulated by Balachandran and Vaidya using the notion of superselection sectors and direction-dependent test functions at spatial infinity for the non-local observables. Inspired by these developments and under the assumption that the spectrum of the electric charge is quantized, (in units of a fundamental charge e) we construct a family of vertex operators which create winding number k, electrically charged Abelian vortices from the vacuum (zero winding number sector) and/or shift the winding number by k units. In particular, we find that for rotating vortices the vertex operator at level k shifts the angular momentum of the vortex by k \frac{{\tilde q}}{q}, where \tilde q is the electric charge of the quantum state of the vortex and q is the charge of the vortex scalar field under the U(1) gauge field. We also show that, for charged-particle-vortex composites angular momentum eigenvalues shift by k \frac{{\tilde q}}{q}, {\tilde q} being the electric charge of the charged-particle-vortex composite. This leads to the result that for \frac{{\tilde q}}{q} half-odd integral and for odd k our vertex operators flip the statistics of charged-particle-vortex composites from bosons to fermions and vice versa. For fractional values of \frac{{\tilde q}}{q}, application of vertex operator on charged-particle-vortex composite leads in general to composites with anyonic statistics.Comment: Published version, 15+1 pages, 1 figur
    • …
    corecore