829 research outputs found
Universal scaling behavior of directed percolation around the upper critical dimension
In this work we consider the steady state scaling behavior of directed
percolation around the upper critical dimension. In particular we determine
numerically the order parameter, its fluctuations as well as the susceptibility
as a function of the control parameter and the conjugated field. Additionally
to the universal scaling functions, several universal amplitude combinations
are considered. We compare our results with those of a renormalization group
approach.Comment: 19 pages, 8 figures, accepted for publication in J. Stat. Phy
Dynamic correlation functions and Boltzmann Langevin approach for driven one dimensional lattice gas
We study the dynamics of the totally asymmetric exclusion process with open
boundaries by phenomenological theories complemented by extensive Monte-Carlo
simulations. Upon combining domain wall theory with a kinetic approach known as
Boltzmann-Langevin theory we are able to give a complete qualitative picture of
the dynamics in the low and high density regime and at the corresponding phase
boundary. At the coexistence line between high and low density phases we
observe a time scale separation between local density fluctuations and
collective domain wall motion, which are well accounted for by the
Boltzmann-Langevin and domain wall theory, respectively. We present Monte-Carlo
data for the correlation functions and power spectra in the full parameter
range of the model.Comment: 10 pages, 9 figure
Phase-separation transition in one-dimensional driven models
A class of models of two-species driven diffusive systems which is shown to exhibit phase separation in d=1 dimensions is introduced. Unlike previously studied models exhibiting similar phenomena, here the relative density of the two species is fluctuating within the macroscopic domain of the phase separtated state. The nature of the phase transition from the homogeneous to the phase-separated state is discussed in view of a recently introduced criterion for phase separation in one-dimensional driven systems
Spontaneous Symmetry Breaking in a Non-Conserving Two-Species Driven Model
A two species particle model on an open chain with dynamics which is
non-conserving in the bulk is introduced. The dynamical rules which define the
model obey a symmetry between the two species. The model exhibits a rich
behavior which includes spontaneous symmetry breaking and localized shocks. The
phase diagram in several regions of parameter space is calculated within
mean-field approximation, and compared with Monte-Carlo simulations. In the
limit where fluctuations in the number of particles in the system are taken to
zero, an exact solution is obtained. We present and analyze a physical picture
which serves to explain the different phases of the model
On-line Excited-State Laser Spectroscopy of Trapped Short-Lived Ra Ions
As an important step towards an atomic parity violation experiment in one
single trapped Ra ion, laser spectroscopy experiments were performed with
on-line produced short-lived Ra ions. The isotope shift of
the D\,-\,P and
D\,-\,P transitions and the hyperfine structure
constant of the S and D states in Ra
were measured. These values provide a benchmark for the required atomic theory.
A lower limit of ms for the lifetime of the metastable
D state was measured by optical shelving.Comment: 4.2 pages, 6 figures, 2 tables
Measurement of the half-life of the T= mirror decay of Ne and its implication on physics beyond the standard model
The superallowed mixed mirror decay
of Ne to F is excellently suited for high precision studies of
the weak interaction. However, there is some disagreement on the value of the
half-life. In a new measurement we have determined this quantity to be
= s, which differs
from the previous world average by 3 standard deviations. The impact of this
measurement on limits for physics beyond the standard model such as the
presence of tensor currents is discussed.Comment: 5 pages, 3 figures, 1 tabl
3-3-1 exotic quark search at CERN LEPII-LHC
The 3-3-1 electroweak model is the simplest chiral extension of the standard
model which predicts single and double charged bileptons and exotic quarks
carrying -4/3 and 5/3 units of the positron charge. In this paper we study the
possibilities of the production and decay of one of these exotic quarks at CERN
LEPII-LHC collider. For typical vector bilepton, exotic quark masses and mixing
angles we obtained between 20 and 750 events per year. Angular distributions
are also presented.Comment: 5 pages, RevTex 3.1, 9 eps figures, to appear in Phys. Rev.
Spontaneous Symmetry Breaking in Two-Channel Asymmetric Exclusion Processes with Narrow Entrances
Multi-particle non-equilibrium dynamics in two-channel asymmetric exclusion
processes with narrow entrances is investigated theoretically. Particles move
on two parallel lattices in opposite directions without changing them, while
the channels are coupled only at the boundaries. A particle cannot enter the
corresponding lane if the exit site of the other lane is occupied. Stationary
phase diagrams, particle currents and densities are calculated in a mean-field
approximation. It is shown that there are four stationary phases in the system,
with two of them exhibiting spontaneous symmetry breaking phenomena. Extensive
Monte Carlo computer simulations confirm qualitatively our predictions,
although the phase boundaries and stationary properties deviate from the
mean-field results. Computer simulations indicate that several dynamic and
phase properties of the system have a strong size dependency, and one of the
stationary phases predicted by the mean-field theory disappears in the
thermodynamic limit.Comment: 13 page
Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic
First we consider a unidirectional flux \omega_bar of vehicles each of which
is characterized by its `natural' velocity v drawn from a distribution P(v).
The traffic flow is modeled as a collection of straight `world lines' in the
time-space plane, with overtaking events represented by a fixed queuing time
tau imposed on the overtaking vehicle. This geometrical model exhibits platoon
formation and allows, among many other things, for the calculation of the
effective average velocity w=\phi(v) of a vehicle of natural velocity v.
Secondly, we extend the model to two opposite lanes, A and B. We argue that the
queuing time \tau in one lane is determined by the traffic density in the
opposite lane. On the basis of reasonable additional assumptions we establish a
set of equations that couple the two lanes and can be solved numerically. It
appears that above a critical value \omega_bar_c of the control parameter
\omega_bar the symmetry between the lanes is spontaneously broken: there is a
slow lane where long platoons form behind the slowest vehicles, and a fast lane
where overtaking is easy due to the wide spacing between the platoons in the
opposite direction. A variant of the model is studied in which the spatial
vehicle density \rho_bar rather than the flux \omega_bar is the control
parameter. Unequal fluxes \omega_bar_A and \omega_bar_B in the two lanes are
also considered. The symmetry breaking phenomenon exhibited by this model, even
though no doubt hard to observe in pure form in real-life traffic, nevertheless
indicates a tendency of such traffic.Comment: 50 pages, 16 figures; extra references adde
"Of Mice and Measures": A Project to Improve How We Advance Duchenne Muscular Dystrophy Therapies to the Clinic
A new line of dystrophic mdx mice on the DBA/2J (D2) background has emerged as a candidate to study the efficacy of therapeutic approaches for Duchenne muscular dystrophy (DMD). These mice harbor genetic polymorphisms that appear to increase the severity of the dystropathology, with disease modifiers that also occur in DMD patients, making them attractive for efficacy studies and drug development. This workshop aimed at collecting and consolidating available data on the pathological features and the natural history of these new D2/mdx mice, for comparison with classic mdx mice and controls, and to identify gaps in information and their potential value. The overall aim is to establish guidance on how to best use the D2/mdx mouse model in preclinical studies
- …
