9,075 research outputs found

    Cascaded Nondegenerate Four-Wave Mixing Technique for High-Power Single-Cycle Pulse Synthesis in the Visible and Ultraviolet Ranges

    Full text link
    We present a new technique to synthesize high-power single-cycle pulses in the visible and ultraviolet ranges by coherent superposition of a multiband octave-spanning spectrum obtained by highly-nondegenerate cascaded four-wave mixing of femtosecond pulses in bulk isotropic nonresonant media. The generation of coherent spectra spanning over two octaves in bandwidth is experimentally demonstrated using a thin fused silica slide. Full characterization of the intervening multicolored fields using frequency-resolved optical gating, where multiple cascaded orders have been measured simultaneously for the first time, supports the possibility of direct synthesis of near-single-cycle 2.2 fs visible-UV pulses without recurring to complex amplitude or phase control, which should enable many applications in science and technology.Comment: 13 pages, 4 figures. Submitted to Physical Review

    Probing halo nucleus structure through intermediate energy elastic scattering

    Get PDF
    This work addresses the question of precisely what features of few body models of halo nuclei are probed by elastic scattering on protons at high centre-of-mass energies. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11^{11}Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering crosssections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead.Comment: 8 pages REVTeX, 1 eps figure, accepted for publication in Phys. Rev.

    Dust Abundance and Properties in the Nearby Dwarf Galaxies NGC 147 and NGC 185

    Get PDF
    We present new mid- to far-infrared images of the two dwarf compact elliptical galaxies that are satellites of M31, NGC 185, and NGC 147, obtained with the Spitzer Space Telescope. Spitzer's high sensitivity and spatial resolution enable us for the first time to look directly into the detailed spatial structure and properties of the dust in these systems. The images of NGC 185 at 8 and 24 μm display a mixed morphology characterized by a shell-like diffuse emission region surrounding a central concentration of more intense infrared emission. The lower resolution images at longer wavelengths show the same spatial distribution within the central 50" but beyond this radius, the 160 μm emission is more extended than that at 24 and 70 μm. On the other hand, the dwarf galaxy NGC 147, located only a small distance away from NGC 185, shows no significant infrared emission beyond 24 μm and therefore its diffuse infrared emission is mainly stellar in origin. For NGC 185, the derived dust mass based on the best fit to the spectral energy distribution is 1.9 × 10^3 M_⊙, implying a gas mass of 3.0 × 10^5 M_⊙. These values are in agreement with those previously estimated from infrared as well as CO and H I observations and are consistent with the predicted mass return from dying stars based on the last burst of star formation 1 × 10^9 yr ago. Based on the 70-160 μm flux density ratio, we estimate a temperature for the dust of ~17 K. For NGC 147, we obtain an upper limit for the dust mass of 4.5 × 10^2 M_⊙ at 160 μm (assuming a temperature of ~20 K), a value consistent with the previous upper limit derived using Infrared Space Observatory observations of this galaxy. In the case of NGC 185, we also present full 5-38 μm low-resolution (R ~ 100) spectra of the main emission regions. The Infrared Spectrograph spectra of NGC 185 show strong polycyclic aromatic hydrocarbons emission, deep silicate absorption features and H_2 pure rotational line ratios consistent with having the dust and molecular gas inside the dust cloud being impinged by the far-ultraviolet radiation field of a relatively young stellar population. Therefore, based on its infrared spectral properties, NGC 185 shows signatures of recent star formation (a few ×10^8 yr ago), although its current star formation rate is quite low

    Inline self-diffraction dispersion-scan of over octave-spanning pulses in the single-cycle regime

    Get PDF
    We present an implementation of dispersion-scan based on self-diffraction (SD d-scan) and apply it to the measurement of over octave-spanning sub-4-fs pulses. The results are compared with second-harmonic generation (SHG) d-scan. The efficiency of the SD process is derived theoretically and compared with the spectral response retrieved by the d-scan algorithm. The new SD d-scan has a robust inline setup and enables measuring pulses with over-octave spectra, single-cycle durations and wavelength ranges beyond those of SHG crystals, such as the ultraviolet and the deep-ultraviolet.Comment: 8 pages, 5 figure
    • …
    corecore