37 research outputs found

    Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first european multi-centre experience

    Get PDF
    Aims Magnetic resonance (MR) first-pass myocardial perfusion imaging during hyperaemia detects coronary artery stenoses in humans with test sensitivity depending on contrast medium (CM)-induced signal change in myocardium. In this prospective multi-centre study, the effect of CM dose on myocardial signal change and on diagnostic performance was evaluated using a stress-only approach. Methods and results Ninety-four patients with known or suspected coronary artery disease (CAD) were randomised to 0.05,0.10, or 0.15 mmol/kg body weight of an extravascular CM (Gd-DTPA) and X-ray coronary angiography was performed within 30 days prior/after the MR examination. A multi-slice MR technique with identical hardware and software in all centres was used during hyperaemia (adenosine 0.14 mg/kg/min) to monitor myocardial CM wash-in kinetics and data were analysed semi-automatically in a core laboratory. Protocol violations resulted in 80 complete studies with CAD (defined as ⩾1 vessel with diameter stenosis ⩾50% on quantitative coronary angiography) present in 19/29, 13/24, and 20/27 patients for doses 1, 2, and 3, respectively. In normal myocardium, the upslope increased with CM dose (overall-p<0.0001, ANOVA). For CAD detection the area under the receiver operator characteristics curve for subendocardial data (3 slices with quality score<4 representing 86% of cases) was 0.91±0.07 and 0.86±0.08 for doses 2 and 3, respectively, and was lower for dose 1 (0.53±0.13, p<0.01 and p<0.02 vs. doses 2 and 3, respectively). Corresponding sensitivities/specificities (95% confidence intervals) for pooled doses 2/3 were 93% (77-99%; ns vs. dose 1) and 75% (48-92%;p<0.05 vs. dose 1), respectively. Conclusions With increasing doses of CM, a higher signal response in the myocardium was achieved and consequently this stress-only protocol, with CM doses of 0.10-0.15 mmol/kg combined with a semi-automatic analysis, yielded a high diagnostic performance for the detection of CA

    Renal artery stenosis evaluation: diagnostic performance of gadobenate dimeglumine-enhanced MR angiography--comparison with DSA

    Get PDF
    PURPOSE: To prospectively determine diagnostic performance and safety of contrast material-enhanced (CE) magnetic resonance (MR) angiography with 0.1 mmol per kilogram of body weight gadobenate dimeglumine for depiction of significant steno-occlusive disease (> or =51% stenosis) of renal arteries, with digital subtraction angiography (DSA) as reference standard. MATERIALS AND METHODS: This multicenter study was approved by local institutional review boards; all patients provided written informed consent. Patient enrollment and examination at centers in the United States complied with HIPAA. Two hundred ninety-three patients (154 men, 139 women; mean age, 61.0 years) with severe hypertension (82.2%), progressive renal failure (11.3%), and suspected renal artery stenosis (6.5%) underwent CE MR angiography with three-dimensional spoiled gradient-echo sequences after administration of 0.1 mmol/kg gadobenate dimeglumine at 2 mL/sec. Anteroposterior and oblique DSA was performed in 268 (91.5%) patients. Three independent blinded reviewers evaluated CE MR angiographic images. Sensitivity, specificity, and accuracy of CE MR angiography for detection of significant steno-occlusive disease (> or =51% vessel lumen narrowing) were determined at segment (main renal artery) and patient levels. Positive and negative predictive values and positive and negative likelihood ratios were determined. Interobserver agreement was analyzed with generalized kappa statistics. A safety evaluation (clinical examination, electrocardiogram, blood and urine analysis, monitoring for adverse events) was performed. RESULTS: Of 268 patients, 178 who were evaluated with MR angiography and DSA had significant steno-occlusive disease of renal arteries at DSA. Sensitivity, specificity, and accuracy of CE MR angiography for detection of 51% or greater stenosis or occlusion were 60.1%-84.1%, 89.4%-94.7%, and 80.4%-86.9%, respectively, at segment level. Similar values were obtained for predictive values and for patient-level analyses. Few CE MR angiographic examinations (1.9%-2.8%) were technically inadequate. Interobserver agreement for detection of significant steno-occlusive disease was good (79.9% agreement; kappa = 0.69). No safety concerns were noted. CONCLUSION: CE MR angiography performed with 0.1 mmol/kg gadobenate dimeglumine, compared with DSA, is safe and provides good sensitivity, specificity, and accuracy for detection of significant renal artery steno-occlusive disease
    corecore