39 research outputs found
Optimising time-limited non-pharmaceutical interventions for COVID-19 outbreak control
Retrospective analyses of the non-pharmaceutical interventions (NPIs) used to combat the ongoing COVID-19 outbreak have highlighted the potential of optimizing interventions. These optimal interventions allow policymakers to manage NPIs to minimize the epidemiological and human health impacts of both COVID-19 and the intervention itself. Here, we use a susceptible-infectious-recovered (SIR) mathematical model to explore the feasibility of optimizing the duration, magnitude and trigger point of five different NPI scenarios to minimize the peak prevalence or the attack rate of a simulated UK COVID-19 outbreak. An optimal parameter space to minimize the peak prevalence or the attack rate was identified for each intervention scenario, with each scenario differing with regard to how reductions to transmission were modelled. However, we show that these optimal interventions are fragile, sensitive to epidemiological uncertainty and prone to implementation error. We highlight the use of robust, but suboptimal interventions as an alternative, with these interventions capable of mitigating the peak prevalence or the attack rate over a broader, more achievable parameter space, but being less efficacious than theoretically optimal interventions. This work provides an illustrative example of the concept of intervention optimization across a range of different NPI strategies. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'
Jump‐starting coastal wetland restoration: a comparison of marsh and mangrove foundation species
During coastal wetland restoration, foundation plant species are critical in creating habitat, modulating ecosystem functions, and supporting ecological communities. Following initial hydrologic restoration, foundation plant species can help stabilize sediments and jump-start ecosystem development. Different foundation species, however, have different traits and environmental tolerances. To understand how these traits and tolerances impact restoration trajectories, there is a need for comparative studies among foundation species. In subtropical and tropical climates, coastal wetland restoration practitioners can sometimes choose between salt marsh and/or mangrove foundation species. Here, we compared the early life history traits and environmental tolerances of two foundation species: (1) a salt marsh grass (Spartina alterniflora) and (2) a mangrove tree (Avicennia germinans). In an 18-month study of a recently restored coastal wetland in southeastern Louisiana (USA), we examined growth and survival along an elevation gradient and compared expansion and recruitment rates. We found that the rapid growth, expansion, and recruitment rates of the salt marsh grass make it a better species for quickly establishing ecological structure at suitable elevations. The slower growth, limited expansion, and lower recruitment of the mangrove species show its restricted capacity for immediate structural restoration, especially in areas where it co-occurs with perennial salt marsh species. Our findings suggest that the structural attributes needed in recently restored areas can be achieved sooner using fast-growing foundation species. Following salt marsh grass establishment, mangroves can then be used to further assist ecosystem development. This work highlights how appropriate foundation species can help jump-start ecosystem development to meet restoration objectives
Ranging behaviour of Uganda's elephants
Elephant populations are in decline across the African continent, but recent aerial surveys show that populations in Uganda are increasing. However, threats such as poaching and habitat disturbance remain. Having a comprehensive knowledge of the ranging behaviour of Ugandan elephants is crucial to understanding where critical habitat for the species occurs. We investigated various aspects of ranging behaviour of 45 radio-collared elephants (Loxodonta africana) in three areas – Queen Elizabeth (QEPA) and Murchison Falls (MFPA) Protected Areas, and Kidepo Valley (KVCA) Conservation Area. We also set Ugandan analyses in a continental context by comparison with home ranges reported in published literature. Elephants within KVCA had larger core ranges than elephants in QEPA or MFPA. Wet season ranges in KVCA were much larger than dry season ranges. The most important core areas in all three national parks were centred around water resources. Home range size was negatively correlated with net primary productivity (NPP) at Ugandan (N=39 individuals) and continental (N=17 sites) scales. This study indicates that, at a local scale, factors such as water source location are important in shaping elephant ranging behaviour. At larger scales, factors such as NPP are good predictors of elephant home range size