96 research outputs found

    Weighted ensemble: Recent mathematical developments

    Full text link
    The weighted ensemble (WE) method, an enhanced sampling approach based on periodically replicating and pruning trajectories in a set of parallel simulations, has grown increasingly popular for computational biochemistry problems, due in part to improved hardware and the availability of modern software. Algorithmic and analytical improvements have also played an important role, and progress has accelerated in recent years. Here, we discuss and elaborate on the WE method from a mathematical perspective, highlighting recent results which have begun to yield greater computational efficiency. Notable among these innovations are variance reduction approaches that optimize trajectory management for systems of arbitrary dimensionality.Comment: 12 pages, 10 figure

    Clinically recognizable error rate after the transfer of comprehensive chromosomal screened euploid embryos is low

    Get PDF
    ObjectiveTo determine the clinically recognizable error rate with the use of quantitative polymerase chain reaction (qPCR)–based comprehensive chromosomal screening (CCS).DesignRetrospective study.SettingMultiple fertility centers.Patient(s)All patients receiving euploid designated embryos.Intervention(s)Trophectoderm biopsy for CCS.Main Outcome Measure(s)Evaluation of the pregnancy outcomes following the transfer of qPCR-designated euploid embryos. Calculation of the clinically recognizable error rate.Result(s)A total of 3,168 transfers led to 2,354 pregnancies (74.3%). Of 4,794 CCS euploid embryos transferred, 2,976 gestational sacs developed, reflecting a clinical implantation rate of 62.1%. In the cases where a miscarriage occurred and products of conception were available for analysis, ten were ultimately found to be aneuploid. Seven were identified in the products of conception following clinical losses and three in ongoing pregnancies. The clinically recognizable error rate per embryo designated as euploid was 0.21% (95% confidence interval [CI] 0.10–0.37). The clinically recognizable error rate per transfer was 0.32% (95% CI 0.16–0.56). The clinically recognizable error rate per ongoing pregnancy was 0.13% (95% CI 0.03–0.37). Three products of conception from aneuploid losses were available to the molecular laboratory for detailed examination, and all of them demonstrated fetal mosaicism.Conclusion(s)The clinically recognizable error rate with qPCR-based CCS is real but quite low. Although evaluated in only a limited number of specimens, mosaicism appears to play a prominent role in misdiagnoses. Mosaic errors present a genuine limit to the effectiveness of aneuploidy screening, because they are not attributable to technical issues in the embryology or analytic laboratories

    FULLDOC: A Full Reporting Debugger for Optimized Code

    No full text

    FULLDOC: A full reporting debugger for optimized code

    No full text
    . As compilers increasingly rely on optimizations to achieve high performance, the effectiveness of source level debuggers for optimized code continues to falter. Even if values of source variables are computed in the execution of the optimized code, source level debuggers of optimized code are unable to always report the expected values of source variables at breakpoints. In this paper, we present FULLDOC, a debugger that can report all of the expected values of source variables that are computed in the optimized code. FULLDOC uses statically computed information to guide the gathering of dynamic information that enables full reporting. FULLDOC can report expected values at breakpoints when reportability is affected because values have been overwritten early, due to code hoisting or register reuse, or written late, due to code sinking. Our debugger can also report values that are path sensitive in that a value may be computed only along one path or the location of the va..
    • …
    corecore